

EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS THIRD EXAMINATION IN SCIENCE-2008/2009 FIRST SEMESTER (FEB., 2010) MT 304 - GENERAL TOPOLOGY

nswer all questions

Time: Two hours

- 1. Define the following on a non-empty set X:
 - topology on X;
 - limit point of a subset of X;
 - dense subset of X.
 - (a) Let τ be the class of subsets of N, set of all natural numbers, consisting of φ and all subsets of N of the form E_n = {n, n+1, n+2, · · · }, where n ∈ N. Show that τ is a topology on N. Write down the open sets containing the element 5 ∈ N.

Determine the following:

- i. limit points of the set $A = \{4, 13, 28, 37\};$
- ii. subsets E of N for which E' = N, where E' is the set of all limit points of E;
- iii. closed subsets of (\mathbb{N}, τ) ;
- iv. closure of the sets $\{7, 24, 47, 85\}$ and $\{3, 6, 9, 12, \cdots\}$;
- v. dense subsets of \mathbb{N} .
- (b) Prove that a subset A of a topological space X is closed if and only if A contains each of its limit points.

Hence show that, $S = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\}$ is not closed under the usual topology on \mathbb{R} , set of real numbers.

2. Define the terms base and subbase for a topological space.

- (a) Let \mathbb{B} be a class of subsets of a non-empty set X. Then prove that \mathbb{B} is a base for some topology on X if and only if it satisfies the following properties:
 - (i) $X = \bigcup_{B \in \mathbb{R}} B$,
 - (ii) for any $B, B' \in \mathbb{B}$, if $p \in B \cap B'$ then there exists $B_p \in \mathbb{B}$ such that $p \in B_p \subseteq B \cap B'$.
- (b) i. Let D be the discrete topology on Y = {a, b, c, d, e}. Find a subbase S for D, which does not contain any singleton sets.
 - ii. Let S be a subbase for a topology τ on X and A be a subset of X. Show that the class $S_A = \{A \cap S : S \in S\}$ is a subbase for the relative topology τ_A on A.
- 3. (a) What is meant by a function f from a topological space X to a topological space Y is continuous at a point x₀ ∈ X?
 Let f be a function from a topological space (X, τ₁) into a topological space (Y, τ₂). Prove the following:
 - i. f is continuous if and only if $f^{-1}(G)$ is open in X for each open set G in Y.
 - ii. if S is a subbase for τ_2 , then f is continuous if and only if $f^{-1}(A) \in \tau_1, \ \forall A \in S.$
 - (b) Define Frechet space (T_1) and Hausdorff space (T_2) .
 - i. Prove that every T_2 space is T_1 . Is the converse true? Justify your answer.
 - ii. Prove that a topological space (X, τ) is a T_1 space if and only if every singleton subset of X is closed.
- 4. Prove or disprove the following statements:
 - (a) continuous image of a compact set in a topological space is compact.
 - (b) in the usual topology on \mathbb{R} , the subset (0, 1) is compact.
 - (c) the class of open intervals $A_n = \{(0, \frac{1}{n}) : n \in \mathbb{N}\}$ satisfies the finite intersection property and $\bigcap_{n \in \mathbb{N}} A_n = \phi$.

(d) (X, τ) is a compact topological space if and only if for every class $\{F_i\}$ of closed subset of X, $\bigcap_i F_i = \phi$ implies $\{F_i\}$ contains a finite subclass $\{F_{i_1}, F_{i_2}, \cdots, F_{i_m}\}$ with $F_{i_1} \cap F_{i_2} \cap \cdots \cap F_{i_m} = \phi$.