EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS
THIRD EXAMINATION IN SCIENCE -2008/2009
FIRST SEMESTER (Feb., 2010)
MT 302 - ANALYSIS IV(COMPLEX ANALYSIS)
(Proper)

Answer all questions
Time: Three hours

1. (a) Define what is meant by a complex-valued function f, defined on a domain $D(\subseteq \mathbb{C})$, has a limit at $z_{0} \in D$.
i. Prove that if a complex-valued function f has a limit at $z_{0} \in D$, then it is unique.
ii. Show that

$$
\lim _{z \rightarrow 3 i} \frac{z^{2}+6-i z}{z-3 i}=5 i
$$

(b) i. Let $f: S \subseteq \mathbb{C} \longrightarrow \mathbb{C}$ and let z_{0} be an interior point of S. Define what is meant by f being continuous at z_{0} and on S.

Show that the function

$$
f(z)=z^{2}
$$

is continuous at $z=z_{0}$.
ii. Show that

$$
\left|\exp \left(z^{2}\right)\right| \leq \exp \left(|z|^{2}\right)
$$

2. (a) i. Let $f: A \longrightarrow \mathbb{C}$ and $A \subseteq \mathbb{C}$ be an open set. Define what is meant by f being analytic at $z_{0} \in A$.
ii. Show that if $z=x+i y$ and a function $f(z)=U(x, y)+i V(x, y)$ is analytic at $z_{0}=x_{0}+i y_{0}$, then the equations

$$
\frac{\partial U}{\partial x}=\frac{\partial V}{\partial y} \text { and } \frac{\partial U}{\partial y}=-\frac{\partial V}{\partial x}
$$

are satisfied at every point of some neighborhood of z_{0}.
iii. Show that the function

$$
f(z)=\left\{\begin{array}{lr}
\frac{x^{3}+y^{3}}{x^{2}+y^{2}}+\frac{y^{3}-x^{3}}{x^{2}+y^{2}}, & \text { for } x^{2}+y^{2} \neq 0 \\
0, & \text { for } x^{2}+y^{2}=0
\end{array}\right.
$$

does not have derivative at $z=0$.
(b) i. Show that the function $U(x, y)=e^{-x}(x \sin y-y \cos y)$ is harmonic.
ii. Find a function $V(x, y)$ such that $f(z)=U(x, y)+i V(x, y)$ is analytic.
3. (a) Let f be analytic everywhere within and on a simple closed contour C, taken in the positive sense. If z_{0} is any point inside C then the $n^{\text {th }}$ derivative of f at $z=z_{0}$ is given by

$$
f^{(n)}\left(z_{0}\right)=\frac{n!}{2 \pi i} \int_{C} \frac{f(z)}{\left(z-z_{0}\right)^{n+1}} d z, \text { where } n=0,1,2,3, \ldots \ldots
$$

Prove the above result for $n=0$.
Hence prove that if $f(z)$ is analytic inside and on a circle C of radius r and center at $z=a$,

$$
\left|f^{n}(a)\right| \leq \frac{M \cdot n!}{r^{n}} \quad n=0,1,2,3, \ldots
$$

where M is a constant such that $|f(z)|<M$.
(b) Using the above result prove the Liouville's theorem for bounded functions.
(c) Show that

$$
\int_{C} \frac{d z}{z+1}=2 \pi i \text { if } \mathrm{C} \text { is the circle, } \mathrm{C}:|\mathrm{z}|=2
$$

4. (a) i. Define what is meant by a path $\gamma:[\alpha, \beta] \longrightarrow \mathbb{C}$.
ii. For a path γ and a continuous function $f: \gamma \longrightarrow \mathbb{C}$, define $\int_{\gamma} f(z) d z$.
(b) Prove that if $w(t)$ is a continuous complex - valued function of t such that $a \leq t \leq b$, then

$$
\int_{a}^{b} w(t) d t \leq \int_{a}^{b}|w(t)| d t
$$

(c) State and prove the Taylor's theorem.

Show that

$$
\sin z=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+1}}{(2 n+1)!} ; \quad|z|<\infty .
$$

5. (a) Let $\delta>0$ and let $f: D^{*}\left(z_{0} ; \delta\right) \rightarrow \mathbb{C}$, where $D^{*}\left(z_{0} ; \delta\right):=\left\{z: 0<\left|z-z_{0}\right|<\delta\right\}$. Define what is meant by
i. f having a singularity at z_{0};
ii. the order of f at z_{0};
iii. f having a pole or zero at z_{0} of order m;
iv. f having a simple pole or simple zero at z_{0}.
(b) Prove that $\operatorname{ord}\left(f, z_{0}\right)=m$ if and only if

$$
f(z)=\left(z-z_{0}\right)^{m} g(z), \quad \forall z \in D^{*}\left(z_{0} ; \delta\right)
$$

for some $\delta>0$, where g is analytic in $D^{*}\left(z_{0} ; \delta\right):=\left\{z:\left|z-z_{0}\right|<\delta\right\}$ and $g\left(z_{0}\right) \neq 0$.
(c) Prove that if f has a simple pole at z_{0}, then

$$
\operatorname{Res}\left(f ; z_{0}\right)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f\left(z_{0}\right)
$$

where $\operatorname{Res}\left(f ; z_{0}\right)$ denotes the residue of $f(z)$ at $z=z_{0}$.
6. (a) Let f be analytic in $\{z: \operatorname{Im}(z) \geq 0\}$, except possibly for finitely many singularities, none of them on the real axis. Suppose there exist $M, R>0$ and $\alpha>1$ such that

$$
|f(z)| \leq \frac{M}{|z|^{\alpha}}, \quad|z| \geq R \quad \text { with } \quad \operatorname{Im}(z) \geq 0
$$

Prove that $I=\int_{-\infty}^{\infty} f(x) d x$ converges (exists) and

$$
I=2 \pi i \times \text { Sum of Residues in the upper half plane. }
$$

(b) A function $\phi(z)$ is zero when $z=0$, and is real when z is real, and is analytic when $|z| \leq 1$. If $f(x, y)$ is the imaginary part of $\phi(x+i y)$, then prove that

$$
\int_{0}^{2 \pi} \frac{x \sin \theta}{1-2 x \cos \theta+x^{2}} f(\cos \theta, \sin \theta) d \theta=\pi \phi(x) \text { holdes when }-1<x<1
$$

