EASTERN UNIVERSITY SRILANKA FACULTY OF AGRICULTURE

 THIRD YEAR FIRST SEMIESTER EXAMINATION IN AGRICULTURE $2008 / 2009$(September/October 2009)

AEN 3101 - HYDRAULICS AND HYDROLOGY (2:30/00)

Time: 2 hrs
Answer all questions
Index no...................

1. (a) Derive Bernoulli's equation for the flow of an incompressible frictionless fluid.
(b) A pipeline ABC connects two reservoirs as shown in the diagram. If the friction factor f is 0.008 determine the water flow rate and the pressure at B for the conditions shown. Neglect all energy degradation except that due to pipe friction.

2. (a) Using the Chezy formula, find the proportions of a trapezoidal channel which will make the discharge at maximum for a given area. Show that the sides and the base of such section are tangential to a semi circle whose centre is at the water surface.
(b) A trapezoidal channel of best section carries a discharge of $13.7 \mathrm{~m}^{3} / \mathrm{s}$ at a velocity of $0.9 \mathrm{~m} / \mathrm{s}$. The side slopes are $1: 2$. (i) Design the channel if the Chezy's constant $\mathrm{C}=45$ and (ii) find the bed slope?
3. (a) Briefly explain the process and mechanics of infiltration with suitable illustrations.
(b) The infiltration rate under shallow ponding was monitored as a function of cumulative rainfall and found to be $20 \mathrm{~mm} / \mathrm{hr}$ when a total of 100 mm had infiltrated. If the eventual steady rate of infiltration is $5 \mathrm{~mm} / \mathrm{hr}$, estimate the infiltration rate at a cumulative infiltration of 200 and 400 mm . (Use the Green and Ampt equation)
4. Two rainfalls in magnitudes of 3.5 and 1.75 cm , occurring consecutively at $6-\mathrm{h}$ interval on a catchment area of $75.168 \mathrm{Km}^{2}$. The out flow hydrograph of catchment is as follows. (Assume base is constant, at the rate of $5 \mathrm{~m}^{3} / \mathrm{s}$)

Time since beginning of rainfall (h)	0	3	6	9	12	15	18	21	24	27	30	33
Outflow(cu.m/s)	5	5	9	11	14	17	13	11	10	9	7	5

a) Compute the effective rainfall amount and \varnothing index.
b) Plot the storm hydrograph and unit hydrograph.
c) Separate the base flow from storm hydrograph by Barne's method also indicates the regions and important points on plotted hydrograph.
d) If $3-\mathrm{h}$ unit hydrograph for a catchment area of $25 \mathrm{~km}^{2}$ has $250 \mathrm{~m}^{3} / \mathrm{s}$ as peak discharge, determine the peak discharge of hydrograph, if base flow is $25 \mathrm{~m}^{3} / \mathrm{s}$. Assume direct runoff volume of catchment is $6.25 \times 10^{5} \mathrm{~m}^{3}$.

