

EASTERN UNIVERSITY, SRI LANKA FIRST EXAMINATION IN SCIENCE - EXTERNAL DEGREE 1998/99 (Term System) Re-Repeat

June - 2008

EXCH 101 PERIODICITY & BONDING AND THERMODYNAMICS.

TIME: 2 HOURS

ANSWER <u>FOUR</u> QUESTIONS ONLY, SELECTING <u>AT LEAST ONE QUESTION</u> <u>FROM PART B</u>

PART A

- 1) Write short notes on the following
 - (a) Metallic bonding
 - (b) Polarization of ions
 - (c) Ouantum numbers
- 2) (a) Draw the molecular orbital energy level diagram for CO and O2.
 - (b) Place the species O₂, O₂ and O₂ and O₂ in order of increasing bond length and increasing bond energy giving reasons and indicate their magnetic property.
 - (c) Use molecular orbital theory to explain why the bond strength is a N₂ molecule is greater than that in a F₂ molecule.
- 3) (a) Explain the following statement.
 - ' Hydrogen atom has only a single electron. However the emission spectrum of hydrogen consists of many lines.'
 - (b) The Balmer series of spectral lines for hydrogen appear in the visible region. What transitions correspond to the spectral lines at 379.0? $(h = 6.626 \times 10^{-34} \text{ Js})$
 - (c) i) Define the term lattice energy
 - ii) Using the data provided, calculate the enthalpy of formation of AgCl from the Bohn Heber cycle.

Sublimation energy for $Ag_{(s)}$ 288 kJ mol⁻¹. First ionization energy for $Ag_{(g)}$ 736 kJ mol⁻¹. Formation energy for AgCl -125 kJ mol⁻¹ 242 kJ mol⁻¹ Electron affinity of $Cl_{2(g)}$ -349 kJ mol⁻¹

- 2) (a) What do you understand by Valence Shell Electron Pair Repulsion (VSEPR) theory?
 - (b) Predict the shape of the following molecules using VSEPR theory.
 - i) BrF5
- ii) XeOF₄
- iii) OF2.

(c) Given that,

$$\operatorname{Sn}^{++} + 2 \operatorname{e} \longrightarrow \operatorname{Sn} \qquad \operatorname{E}^{\theta} = -0.14 \operatorname{v}$$

$$\operatorname{Pb}^{++} + 2 \operatorname{e} \longrightarrow \operatorname{Pb} \qquad \operatorname{E}^{\theta} = -0.13 \operatorname{v}$$

Calculate the E^{θ} and E of the cell,

 Pb/Pb^{2+} (0.001M)// Sn^{2+} (1.0M)/Sn.

PART B

- 5) (a) Explain the following terms
 - i) Intensive property
 - ii) Reversible process
 - (b) i) Derive the expression for the work done when 'n' moles of an ideal gas expand isothermally and reversibly from volume V_1 to V_2
 - 2 moles of an ideal gas at the initial pressure of 1atm at 0° C were expanded reversibly under isothermal conditions to a final pressure of 0.1 atm. Calculate the work done by the gas and change in internal energy.
 - (c) i) Write the mathematical expression of isobaric heat capacity (C_p) .
 - ii) For one mole of an gas, show that $C_P C_v = R$
- 6) (a) Derive the following equations for a reversible process

i)
$$dU = TdS - PdV$$

ii)
$$dA = -PdV - SdT$$

iii)
$$dG = VdP - SdT$$

iv)
$$dA = -PdV - SdT$$

- (b) i) Write the mathematical expression of second law of thermodynamics.

 ii) For an ideal gas, show that the entropy change $\Delta S = C_V \ln \left(\frac{T_2}{T_1} \right) + R \ln \left(\frac{V_2}{V_1} \right)$
- (c) Derive the Maxwell relation $\left(\frac{\partial V}{\partial T}\right)_{P} = -\left(\frac{\partial S}{\partial P}\right)_{T}$