

Eastern University, Sri Lanka
 External Degree

First year Second semester Examination in Science - 2004/2005
January/ March 2011
EXTCH 103 Stereochemistry and Kinetic Molecular Theory of Gases

1. (a) Structures of some organic compounds are given below. Answer the questions based on the structures given

1

II

IV

V
i) Define the term "structure" of organic cempound using ethane (I) as an example

05 marks
ii) Convert the structures II, III and IV into their respective Newmann projection formulae

20 marks
iii) Draw the wo chair conformation of the structure V and comments on their stability

15 marks
iv) Draw all the Newman projection formulae for the conformers that are obtained by subsequent 60° rotation about the middle $2 \mathrm{C}-3 \mathrm{C}$ bond of the structure II and construct the potential energy Vs torsional angle diagram for them.
(b) Assign the stereogenic centres as R or S in the following compound. Give reasons for your answer

10 marks
(c) Assign the configuration as E/Z of the carbon-carbon double bond in the following alkene

10 marks
(d) Identify the stereochemical relationships between the following pairs as enantiomers, diastereomers, meso compound and identical compound
i)

and $\mathrm{H}-\mathrm{C}_{\mathrm{Br}}^{\mathrm{Hr}} \mathrm{CH}_{3}$
10 marks
ii)

10 marks
2. (a) i) Write down the postulates of kinetic molecular theory of gases

20 marks
ii) Give the kinetic gas equation and explain all the terms involved in it 10 marks
iii) Derive the expression to show that that kinetic energy of one mole of gas E is

$$
E=\frac{3 R T}{2}
$$

15 marks
(b) How does the real gas deviate from the ideal behaviour?

15 marks
(c) i) Write down the van der Waals equation of state and explain all the terms involved

15 marks
ii) Calculate the pressure exerted by 1.00 mole of methane $\left(\mathrm{CH}_{4}\right)$ in 250 ml container at 300 K using van der Waals equation. What pressure will be predicted by ideal gas equation?

$$
\left(\mathrm{a}=2.253 l^{2} \cdot \mathrm{~atm} \cdot \mathrm{~mol}^{-2} ; \mathrm{b}=0.0428 l . \mathrm{mol}^{-1} ; \mathrm{R}=0.0821 l . \mathrm{atm} \cdot \mathrm{~mol}^{-1} . \mathrm{K}\right)
$$

