EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

FIRST EXAMINATION IN SCIENCE - 2008/2009
SECOND SEMESTER (March./April,2011)
EXTMT 102 - ANALYSIS I (Real Analysis)

EXTERNAL DEGREE

1. (a) i. Define the terms Supremum and Infimum of a non-empty subset of \mathbb{R}.
ii. State the Completeness property of \mathbb{R}.

Prove that every non-empty bounded below subset of \mathbb{R} has an infimum.
(b) i. Prove that an upper bound u of a non-empty bounded above subset S of \mathbb{R} is the supremum of S if and only if for every $\epsilon>0$, there exists an $x \in S$ such that $x>u-\epsilon$.
ii. Let a subset S_{k} of $\mathbb{R}, k \in \mathbb{N}$ be defined by

$$
S_{k}=\{t: t \in \mathbb{N}, 1 \leq t \leq k\} \cup\{k+r: r \in \mathbb{N}\}
$$

Prove that $S_{k}=\mathbb{N}$.
(c) Find the supremum and infimum of the set

$$
\left\{\frac{2}{17}\left(1-\frac{1}{13^{n}}\right): n \in \mathbb{N}\right\}
$$

if they exist.
2. State and prove the Archimedean property. Hence prove the following:
(a) If $x \in \mathbb{R}$, then there exists a unique element $p \in \mathbb{Z}$ such that

$$
p-1 \leq x<p .
$$

(b) There exists an irrational number $x \in \mathbb{R}$ such that $x^{2}=2$.
(c) If $x, y \in \mathbb{R}$ awith $x<y$, then there exists a rational number p such that $x<p<y$ and hence $x<q<y$ for some irrational number q.
3. (a) Define the terms monotone sequence and Cauchy sequence.
(b) Let a sequence $\left(x_{n}\right)$ be defined inductively by

$$
x_{1}=4, x_{n+1}=\frac{1}{10}\left(x_{n}^{2}+21\right), \forall n \in \mathbb{N} .
$$

Show that
i. $3<x_{n}<7, \forall n \in \mathbb{N}$;
ii. $\left(x_{n}\right)$ is decreasing.

Deduce that $\left(x_{n}\right)$ converges and find its limit.
(c) Prove that a sequence of real numbers is Cauchy if and only if it is convergent.
Show that the sequence $\left(x_{n}\right)$ given by $x_{n}=\left(n+\frac{(-1)^{n}}{n}\right)$ is not a Cauchy sequence.
4. (a) Let $A \subseteq \mathbb{R}$ and $f: A \rightarrow \mathbb{R}$ be a function. Define what is meant by $f(x) \rightarrow l$ as $x \rightarrow x_{0}, x_{0} \in A$.
Prove that $\lim _{x \rightarrow 2}\left(2 x^{2}-x+1\right)=7$.
(b) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function and $\lim _{x \rightarrow a} f(x)=l(\neq 0)$.

Prove the following:
i. there exists $\delta>0$ such that $\frac{|l|}{2}<|f(x)|<\frac{3|l|}{2}$, for all wixstect that $0<|x-a|<\delta$;
ii. $\lim _{x \rightarrow a} \frac{1}{f(x)}=\frac{1}{l}$, if $f(x) \neq 0, \forall x \in \mathbb{R}$.
5. (a) Explain in terms of ϵ, δ what is meant to say that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at a point $x_{0} \in \mathbb{R}$.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=\sin x, \forall x \in \mathbb{R}$. Prove that f is continuous on \mathbb{R}.
(b) Let $f:[a, b] \rightarrow \mathbb{R}$ be a continuous function on $[a, b]$. Prove that it is bounded on $[a, b]$.
Is the converse result true? Justify your answer.
(c) Show that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)=\left\{\begin{array}{cc}
x & \text { if } x \in \mathbb{Q} \\
-x & \text { if } x \in \mathbb{Q}^{c}
\end{array}\right.
$$

is not continuous in \mathbb{R} except at the point $x=0$.
(Hint: Let $a \in A(\subseteq \mathbb{R})$ and let $f: A \rightarrow \mathbb{R}$, then f is not continuous at a if and only if there exist a sequence $\left(x_{n}\right)$ in A that converges to a but the sequence $\left(f\left(x_{n}\right)\right)$ does not converges to $f(a)$.)
6. (a) Suppose that f and g are continuous on $[a, b]$ differentiable on (a, b) and $g^{\prime}(x) \neq 0$, for all $x \in(a, b)$. Prove that there exists $c \in(a, b)$ such that

$$
\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}
$$

Deduce that

$$
\lim _{x \rightarrow d} \frac{f(x)}{g(x)}=\lim _{x \rightarrow d} \frac{f^{\prime}(x)}{g^{\prime}(x)}, \text { if } f(d)=g(d)=0 \text { for some } d \in(a, b) .
$$

