

Eastern University, Sri Lanka

External Degree

Second year Second Semester Examination in Science

2004/2005 (January/ March 2011)

EXTCH 206 X-Ray Crystallography, Symmetry and Symmetry Elements and Phase Rule.
(Proper \& Repeat)
Answer all questions

1. (a) Draw sketches to identify the following symmetry elements.
(a) a C_{3} axis and a σv plane in the NH_{3} molecule
(b) a C_{4} axis and a oh plane in the square-planer $\left[\mathrm{PtCl}_{4}\right]^{2-}$
(b) Determine the miller indices of the planes of the cubic system shown below.

(c) Calculate the Miller indices of planes whose intercepts on (a), (b) and (c) axes are,
(i) $1 / 4 a, 1 / 4 b, \alpha$
(ii) $1 / 2 \mathrm{a}, 1 / 2 \mathrm{~b}, 1 / 2 \mathrm{c}$
(iii) a, b, c

Draw the above planes in a cubic unit cell.
(d) Titanium metal has a body centered cubic lattice and has the density $4.50 \mathrm{~g} \mathrm{~cm}^{-3}$. Assuming that the length of the unit cell, is $3.28{ }^{\circ} \mathrm{A}$, calculate the numbers of titanium atoms are found in the unit cell (Atomic weight of titanium is 47.88 g mol^{-1}).
2) (a) State the number of degrees of freedom for the following reactions
i. PCl_{5} decomposes to PCl_{3} and Cl_{2} in the gas phase
ii. $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$ crysstal decomposes to insoluble $\mathrm{CuSO}_{4} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and water vapour.
(b) At $90^{\circ} \mathrm{C}$, the vapour pressure of toluene is 400 Torr and that of o-xylene is 150 Torr. What is the composition of the liquid mixture that boils at $90^{\circ} \mathrm{C}$ when the pressure is 0.50 atm ? What is the composition of the vapour produced?
(c) Describe the phase changes of a liquid mixture of 4.0 mol of $\mathrm{B}_{2} \mathrm{H}_{6}$ (melting point 131 K) and 1.0 mol of $\mathrm{CH}_{3} \mathrm{OCH}_{3}$ (melting point 135 K) is cooled from 140 K to 90 K . These substances form a compound $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{OB}_{2} \mathrm{H}_{6}$ which melts congruently at 133 K . The exhibits one eutectic at $\mathrm{x}\left(\mathrm{B}_{2} \mathrm{H}_{6}\right)=0.25$ and 123 K and another at x $\left(\mathrm{B}_{2} \mathrm{H}_{\mathrm{F}}\right)=0.90$ and 104 K .

