EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

EXTERNAL DEGREE EXAMINATION IN SCIENCE -2004/2005
SECOND YEAR, SECOND SEMESTER (Jan./Apr., 2011)
EXTMT 205 - DIFFERENTIAL GEOMETRY (PROPER \& REPEAT)

Answer all Questions
Time: One hour

1. State the Frenet - Serret formula.
(a) Let C be a curve with constant torsion at any point P on the curve. Point Q is taken at a constant distance c from the point P on the binormal to the curve C at P. Show that the angle between the binormal to the locus of Q and the binormal of the given curve is

$$
\tan ^{-1}\left(\frac{c \tau^{2}}{\kappa \sqrt{1+c^{2} \tau^{2}}}\right)
$$

(b) Prove with the usual notations that the necessary and sufficient condition for a curve to be a helix is that $\frac{\tau}{\kappa}$ is constant.
2. Define the terms involute and evolute of a curve.
(a) With the usual notations show that the equation of involute of the curve $C: \underline{r}=\underline{r}(s)$ is given by

$$
\underline{R}=\underline{r}+(c-s) \underline{t},
$$

where c is a constant.
(b) Find the involute and evolute of the cubic curve given by

$$
\underline{r}(u)=\left(3 u, 3 u^{2}, 2 u^{3}\right)
$$

