EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

EXTERNAL DEGREE EXAMINATION IN SCIENCE -2008/2009
SECOND YEAR, SECOND SEMESTER (Jan./Apr., 2011)
EXTMT 218-FIELD THEORY
(PROPER \& REPEAT)

Answer all Questions

1. (a) A circular disc of radius a is charged uniformly with a charge density of σ. Find the electric field intensity at a point P at a distance h from the disc along its axis.
i. Find the field at any point P at a distance h from the infinite plane sheet of charge σ.
ii. Two infinite plane sheets are separated by a distance d. The first has a charge $+\sigma$ and the second has a charge $-\sigma$. Find the electric field intensity at any point between them.
(b) State the Gauss's law.

A spherical volume charge density distribution is given by

$$
\rho= \begin{cases}\rho_{0}\left(1-\frac{r^{2}}{a^{2}}\right), & r \leq a \\ 0, & r>a\end{cases}
$$

where \ddot{d} is the radius of the spherical volume.
i. Calculate the total charge Q.
ii. Find the electric field intensity E outside the charge distribution.
iii. Find the electric field intensity E inside.
2. (a) Define an electric field strength due to a point charge.

Show that, the magnitude E of the electric field at a distance y along the perpendicular bisector of a thin non-conducting rod of finite length L with a charge q spread uniformly along it is given by

$$
E=\frac{q}{2 \pi \epsilon_{0} y\left(L^{2}+4 y^{2}\right)^{\frac{1}{2}}}
$$

(b) Define the term electric dipole.

Prove that the electric potential V at a point P at a distance r form the dipole of moment \underline{P} is given by

$$
V=-\frac{1}{4 \pi \varepsilon_{0}}\left\{\underline{\mathrm{P}} \cdot \operatorname{grad}\left(\frac{1}{r}\right)\right\}
$$

and the electric field due to a dipole is given by

$$
\mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}}\left\{\frac{3(\underline{\mathrm{P}} \cdot \underline{\mathrm{r}}) \underline{\mathrm{r}}}{r^{5}}-\frac{\underline{\mathrm{P}}}{r^{3}}\right\}
$$

3. Show by using separation of variables or otherwise, that the solution of the equation $\nabla^{2} V=0$, where V is the potential function in two dimensional rectangular coordinates is given by

$$
V(x, y)=(A \sin (k x)+B \cos (k x))(C \exp (k y)+D \exp (-k y))
$$

where A, B, C, D and k are arbitrary constants.
Prove that the potential distribution inside the rectangular region subject to the boundary eonditions
i. $V=0$, when $x=0$,
ii. $V=0$, when $x=a$,
iii. $V=V_{0}$, when $y=0$,
iv. $V \rightarrow 0$ as $y \rightarrow \infty$, is given by

$$
V(x, y)=\frac{4 V_{0}}{\pi} \sum_{n=1,3,5, \ldots} \frac{1}{n} \exp \left(\frac{-n \pi y}{a}\right) \sin \left(\frac{n \pi x}{a}\right)
$$

4. (a) Define the magnetic flux density \underline{B} and show that $\operatorname{div} \underline{B}=0$ in space.

By assuming the Ampere's law in integral form deduce the equation
Curl $\underline{B}=\mu_{0} \underline{J}$, where \underline{J} is the current density.
(b) Define the magnetic field strength \underline{H} in a magnetizable media and show that Curl $\underline{H}=\underline{J}$.

If no current are present and the magnetization is linearly proportional to \underline{H}, show that there exists a function ϕ such that $\nabla^{2} \phi=0$.
(c) A rod with mass m and a radius R is mounted on a two parallel rails of length a separated by a distance l. The rod carries a current I and rolls without slipping along the rails which are placed in a uniform magnetic field \underline{B} directed into the page. If the rod is initially at rest, show that the speed as it leaves the rails is

$$
\sqrt{\frac{4 I l B a}{3 m}}
$$

