

EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

XTERNAL DEGREE EXAMINATION IN SCIENCE - 2008/2009

THIRD YEAR SECOND SEMESTER (Jan./ Apr., 2010)

EXTMT 301 - GROUP THEORY
siswer all questions
Time: Three hours
(a) Define the term group.
(b) i. Let H be a non-empty subset of a group G. Prove that, H is a subgroup of G if and only if $a b^{-1} \in H, \quad \forall a, b \in H$.
ii. Let H and K be two subgroups of a group G. Prove that $H K$ is a subgroup of G if and only if $H K=K H$.
iii. Let H and K be two subgroups of a group G. Is $H \cup K$ a subgroup of G ? Justify your answer.
iv. Let $\left\{H_{\alpha}\right\}_{\alpha \in I}$ be arbitrary family of subgroups of a group G. Prove that $\bigcap_{\alpha \in I} H_{\alpha}$ is a subgroup of G.
2. State and prove the Lagrange's theorem for a finite group G.
(a) If every non-identity element of a group G has order 2, show that G is abelian.
(b) Let x and y be elements of a group G. Show that the element $x^{-1} y x$ has the same order as y.
(c) Let x and y be elements of a group, with the order of x is 5 . Show that if x^{3} and y commute then x and y commute.
(d) Let G be a non-abelian group of order 10. Prove that G contains at least one element of order 5 .
3. State the first isomorphism theorem.

Let H and K be two normal subgroups of a group G such that $K \subseteq H$. Prove that:
(a) $K \unlhd H$;
(b) $H / K \unlhd G / K$;
(c) $\frac{G / K}{H / K} \cong G / H$.
4. (a) Let G be a group and $g_{1}, g_{2} \in G$. Define a relation " \sim." on G by

$$
g_{1} \sim g_{2} \Leftrightarrow \exists g \in G \text { such that } g_{2}=g^{-1} g_{1} g .
$$

Prove that " \sim " is an equivalence relation on G.
Given $a \in G$, let $\Gamma(a)$ be denote the equivalence class of a. Show that:
i. $|\Gamma(a)|=|G: C(a)|$, where $C(a)=\{x \in G \mid a x=x a\}$;
ii. $a \in Z(G) \Leftrightarrow \Gamma(a)=\{a\}$, where $Z(G)$ is the center of the group G.
(b) Write down the class equation of a finite group G. Hence or otherwise, prove that the center of G is non-trival if the order of G is p^{n}, where p is a positive prime number.
5. (a) Define the term p-group.

Let G be a finite abelian group and let p be a p of G. Prove that G has an element of order p.
(b) Let G^{\prime} be the commutator subgroup of a group G. Prove the following:
i. G is abelian if and only if $G^{\prime}=\{e\}$, where e is the identity element of G. ii. G^{\prime} is a normal subgroup of G.
iii. G / G^{\prime} is abelian.
6. (a) Define the term permutation as applied to a group.
i. Prove that the permutation group on n symbols, S_{n}, is a finite group of order $n!$.

Is S_{n} abelian for $n>2$? Justify your answer.
ii. Prove that the set of even permutations A_{n} forms a normal subgroup of S_{n}. Hence show that $\frac{S_{n}}{A_{n}}$ is a cyclic group of order 2 .
iii. Express the permutation σ in S_{8} as a product of disjoint cycles, where

$$
\sigma=\left(\begin{array}{llllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
3 & 5 & 7 & 4 & 2 & 8 & 1 & 6
\end{array}\right)
$$

