

03 AUG 2010

IBRAR

EASTERN UNIVERSITY, SRI LANKA

DEPARTMENT OF MATHEMATICS

EXTERNAL DEGREE EXAMINATION IN SCIENCE - 2005/2006

SECOND YEAR, FIRST SEMESTER (March/ May, 2010)

EXTCS 202 - OPERATING SYSTEMS

r all questions

Time allowed: 2 Hours

Srl

Discuss the operating systems responsibility when a process termination taken place.

Define the two interrupting policies that can be imposed on scheduling. Describe the *priority scheduling* algorithm.

Given the following information:

Process	CPU Burst	Arrival time
A	10	0
В	3	2
С	4	6
D	1	8
E	2	13
Find	5	14

- i. Draw the Gantt chart for each of the following scheduling algorithms and calculate the average waiting time and average turnaround time for each.
 - Round robin scheduling (using a time quantum of 4);
 - Shortest Job Next scheduling (Pre-emptive).
- ii. Which is the most efficient algorithm for the particular problem? Justify your answer.
- a. What is 'race condition' in process synchronization?
-). Describe the operations P(s) and V(s) on a semaphore 's'.
- What do you understand by the Producer Consumer problem of process synchronization?
- d. Explain how the semaphore can be used to solve the *Producer Consumer problem*? You may use the following skeletons of producer and consumer processes, stating the name and initial values of the semaphores.

Q2. (cont...)

Producer

do { /* produce data */ P(); P(/* write the data into the buffer */ V(): V(} while (1);

Consumer

do { P(/* remove data from the buffer VI V /* consume the data */ } while (1);

1.

- 3. a. Define 'Deadlock'.
 - b. How do you confirm that a system is in deadlocked state?
 - c. Consider the snapshot of system operation described below (with 5 processes ar 4 resources):
 - Process P1 holds resource R2 and wants R1 .
 - Process P2 holds resource R3 and wants R1 & R2
 - Process P3 wants resources R1, R2, R3 & R4
 - Process P4 wants resource R3 & R4
 - Process P5 holds Resource R1 & R4.
 - Draw the resource allocation graph for the above system. i.
 - Examine the system for deadlock, if it does, list the processes involved in ii. system. Justify your answer.
 - Suggest one operation (request or resource allocation) in the system wi iii. could lead the system into a deadlocked state.
 - 4. a. Discuss two memory partitioning methods giving merits and demerits of them. b. What do you understand by "memory fragmentation"?
 - c. The following table shows the job details and the list of memory blocks of the
 - system:

Job no	Memory requested (Kb)
AAA IIA	ore and an
J1	20
J2	20
J3	10
J4	30
J5	15

Memory List:		
Location	Block Size (Kb)	
100	30	
200	15	
300	50	
400	20	
500	10	

- I. You are requested to allocate the jobs in the memory and to find fragmentation using the best fit and first fit memory allocation schemes.
- II. Which is the most efficient allocation scheme for the particular problem (above? Justify your answer.