

Second Year First Semester Examination in Science

2008/2009 (April/May 2010)

External Degree (2004/2005)

EXTCH201: Coordination Chemistry and Main Group Chemistry

(Proper & Repeat)

Answer all questions

Time: 01 hour

[1]

- (a) Write the IUPAC name of the following compounds.
 - i) [Al (OH)(H₂O)₅]⁺
 - ii) NH₄[Cr(NCS)₄(NH₃)₂]
 - iii) Na[CoCl₄(NH₃)₂]
 - iv)

$$\begin{bmatrix} (Co)_3 Fe & CO \\ CO & Fe(CO)_3 \end{bmatrix}$$

(40 marks)

(b) Give an example of each of the following:

- Binuclear Complex
- ii) Low spin complex
- iii) High spin complex

(30 marks)

(c) i). Calculate the spin only magnetic moment for a d⁸ ion in octahedral and tetrahedral ligands fields.

(20 marks)

ii) Explain why the $Co(NH_3)_6^{3+}$ ion is a diamagnetic, low spin complex, where as the CoF_6^{3-} ion is a paramagnetic, high spin complex.

(10 marks)

Cont ..

to produce q grams of a chemical, per day. The company can sell any amount chemical at \$4 per gram. Find how much of chemical the company must per day in order to have neither a profit nor a loss (give the answer to the gram).

3. (a) Assume that x_0, x_1, \ldots, x_n are distinct points in the interval [a, b] and p degree polynomial which approximates the function f(x) such that

$$p(x_i) = f(x_i), \quad \forall \ i = 0, 1, \dots, n.$$

Does it mean the nature of "uniqueness" can be made on the polynomial p? your answer.

(b) Let f(x) be a function defined on $[x_0, x_2]$ and the second derivative of f(x) is uous and bounded on the sub-intervals $[x_0, x_1]$ and $[x_1, x_2]$, where $x_1 = x_0$ $x_2 = x_0 + 2h$. If a quadratic Lagrange's polynomial $p_2(x)$ is used to approximation, show that the bound of the error in approximation is given by

$$\frac{h^3}{9\sqrt{3}} \max |f'''(\xi)|, \quad x_0 < \xi < x_2.$$

(c) Show that an n^{th} -order divided difference of a function $f \in C^n[a, b]$ made distinct points x_0, x_1, \ldots, x_n in [a, b] is given by

$$\frac{1}{n!}f^{(n)}(\xi), \quad a < \xi < b.$$

4. (a) Write down the divided difference table for e^x using the values

	x	e^x
	0.0	1.00000
4:	0.4	1.49182
	0.9	2.45960
	1.5	4.48169
	1.8	6.04965

and estimate $e^{1.2}$.

(b) Estimate

$$\int_{1}^{2} e^{x} dx$$

using the Composite Trapezium and Simpson's rules with two sub intervals

(c) Apply the

- i. Jacobi method and
- ii. Gauss Seidel method

to solve the following system of equations by carrying two iterations for x_1, x_2 and x_3 correct to 4 decimal places:

$$x_1 = \frac{1}{16} (24 + 4x_2 - 4x_3),$$

$$x_2 = \frac{1}{5} (-6 + 4x_1 - 3x_3),$$

$$x_3 = \frac{1}{14} (15 - 4x_1 - 3x_2).$$