EASTERN UNIVERSITY, SRI LANKA DEPARTMENT OF MATHEMATICS
IXTERNAL DEGREE EXAMINATION IN SCIENCE - 2005/2006
SECOND YEAR FIRST SEMESTER(Mar./May, 2010)

EXTMT 215 - CLASSICAL MECHANICS II

Time: One hour

1. (a) Define the terms common catenary and the parameter of a catenary.
(b) Suppose that an equation of a chain of variable weight is described by a part of a cycloid $x=a(t+\sin t)$ and $y=a(1-\cos t)$, where a is a constant. Find the intrinsic equation of the chain.
(c) The chain mentioned in part (b) obeys the differential equation

$$
\frac{d T}{d \psi}+\mu T=-2 a \omega[\sin 2 \psi+\mu(1+\cos 2 \psi)]
$$

where the notations used here are in the usual meaning, and satisfying the end conditions: $T(0)=P$ and $T(\pi / 2)=0$. Show that

$$
P=\frac{4 a \omega}{4+\mu^{2}}\left(3 e^{\mu \pi / 2}-\mu^{2}-1\right)
$$

where e denotes the exponential function.
2. (a) Suppose that a beam $A B$ is kept horizontally and carries continuously distributed load $\omega(x)$ per unit length. If M is bending moment at a breaking point P such that $A P=x$, show that

$$
\frac{d^{2} M}{d x^{2}}=-\omega(x)
$$

(b) Suppose $y=y(x)$ is an equation of a loaded beam $A B$ such that the end A is clamped and B is kept as free. State what does it result for y_{A}, y_{A}^{\prime} and M_{B}, where the notations given here are defined with the usual meaning. How do these change if the ends are simply supported?
(c) State the Clapeyron's equation.

A heavy uniform elastic beam $A B$ of length $6 a$ rests on five supports: two of t ? are at the ends A and B, one is at the middle point C and other two supports at D and E such that $A D=E B=a$, which are in the same horizontal line. S that the moments at C and D are respectively given by $a W / 16$ and $a W / 24$, wl W is the weight of the beam.

