EASTERN UNIVERSITY, SRI LANKA

XXTERNAL DEGREE EXAMINATION IN SCIENCE - 2005/2006

 THIRD YEAR FIRST SEMESTER (Mar./May, 2010) EXTMT 305-OPERATIONAL RESEARCH1. (a) Define the term feasible region for a linear programming problem.
(b) Explain how do you find the optimal solution in the graphical method.
(c) A sick patient has been advised by his doctor that his diet must contain at least 4000 units of vitamins, 50 units of minerals and 1400 units of calories. Two foods F_{1} and F_{2} are available at a cost of Rs. 4 and Rs. 3 per unit respectively. One unit of food F_{1} contains 200 units of vitamins, 1 unit of mineral and 40 units of calories. One unit of food F_{2} contains 100 units of vitamins, 2 units of minerals and 40 units of calories. Formulate the above problem as a linear programming problem and solve using graphical method.
2. Use Simplex Method to solve the following Linear Programming Problem:

Minimize $Z=8 x_{1}+4 x_{2}$, subject to the constraints:

$$
\begin{aligned}
3 x_{1}+x_{2} & \geqslant 27 \\
x_{1}+x_{2} & =21 \\
x_{1}+2 x_{2} & \leqslant 40, \quad x_{1}, x_{2} \geqslant 0
\end{aligned}
$$

3. Use Revised Simplex Method to solve the following linear programming problem is Maximize $Z=60 x_{1}+30 x_{2}+20 x_{3}$, subject to the constraints:

$$
\begin{aligned}
8 x_{1}+6 x_{2}+x_{3} & \leqslant 48 \\
4 x_{1}+2 x_{2}+\frac{3}{2} x_{3} & \leqslant 20 \\
2 x_{1}+\frac{3}{2} x_{2}+\frac{1}{2} x_{3} & \leqslant 8, \quad x_{1}, x_{2}, x_{3} \leqslant 0
\end{aligned}
$$

4. Briefly explain the Vogel's approximation method.

A particular product is manufactured in four factories $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D ; and is a centers 1, 2 and 3. The cost in Rs. of product per unit and capacity in kg per ub) of each plant is given below:

Factory	Cost (Rs.) per unit	Capacity (kg) per unit
A	12	100
B	15	20
C	11	60
D	13	80

Sales center	Sale price (Rs.) per unit	Demand (kg) per unit
1	15	120
2	14	140
3	16	60

Find the optimal sales distribution.
5. Enumerate the steps involved in solving minimization assignment problem.

Five swimmers are eligible to compete in a relay team which is consist of fou mers swimming four different swimming styles; back stroke, breast stroke, free st butterfly. The time taken for the five swimmers Anand, Bhaskar, Chandru, Di Eswar to cover a distance of 100 meters in various swimming styles are given minutes : seconds. Anand swims the back stroke in 1:09, the breast stroke in 1
has never competed in the free style or butterfly. Bhaskar is a free style specialist averaging 1:01 for the 100 meters but can also swim the breast stroke in $1: 16$ and butterfly in 1:20. Chandru swims all styles: the back stroke in $1: 10$, the butterfly in $1: 12$, the free style in 1:05 and the breast stroke in 1:20. Dorai swims only the butterfly in 1:11 while Easwar swims the back stroke in 1:20, the breast stroke in 1:16, the free style in 1:06 and the butterfly in $1: 10$. Which swimmer should be assigned to which swimming style? Who will not be in the relay?

Find the maximum flow for the following network using:
(a) intuitive technique,
(b) labeling technique.

