BRAR

EASTERN UNIVERSITY, SRI LANKA

EXTERNAL DEGREE EXAMINATION IN SCIENCE
FIRST YEAR FIRST SEMESTER -2004/2005
(May/Jun., 2008)
MT 103 - VECTOR ALGEBRA \& CLASSICAL MECHANICS I
(Proper and Repeat)
Answer all questions
Time: Three hours

1. (a) Define the terms 'Scalar product' and 'Vector product' of two vectors. For any three vectors $\underline{a}, \underline{b}, \underline{c}$, prove that the identity

$$
\underline{a} \wedge(\underline{b} \wedge \underline{c})=(\underline{a} \cdot \underline{c}) \underline{b}-(\underline{a} \cdot \underline{b}) \underline{c} .
$$

(b) $\underline{p}, \underline{q}$ and \underline{r} are three non-null vectors such that $\underline{r}-(\underline{p} \wedge \underline{q})=\alpha \underline{q}$ and $\underline{p} \cdot \underline{q}=0$, where α is a scalar. Show that

$$
\underline{p}=\underline{q} \wedge \frac{\underline{r}}{q^{2}} \text { and } \alpha=\frac{\underline{q} \cdot \underline{r}}{q^{2}}
$$

(c) If a vector \underline{r} is resolved into components parallel and perpendicular to a given vector \underline{a}, show that the decomposition is

$$
\underline{r}=\frac{(\underline{a} \cdot \underline{r}) \underline{a}}{a^{2}}+\frac{\underline{a} \wedge(\underline{r} \wedge \underline{a})}{a^{2}} .
$$

2. (a) Define the following terms;
i. the gradient of a scalar field ϕ,
ii. the divergence of a vector field \underline{F},
iii. the curl of a vector field \underline{F}.
(b) Prove that
i. $\operatorname{div}(\phi \underline{\mathbf{F}})=\operatorname{grad} \phi \cdot \underline{\mathbf{F}}+\phi \operatorname{div} \underline{\mathbf{F}}$,
ii. $\operatorname{curl}(\phi \underline{F})=\phi \operatorname{curl} \underline{F}+\operatorname{grad} \phi \wedge \underline{F}$.
(c) Let $\underline{r}=x \underline{\dot{q}}+y \underline{j}+z \underline{k}$ and $r=|\underline{r}|$ and let \underline{a} be a constant vector. Evaluate following:
i. $\operatorname{grad}(\underline{a} \cdot \underline{r})$;
ii. $\operatorname{curl}(\underline{a} \wedge \underline{r})$.

Hence show that
i. $\operatorname{grad}\left(\frac{\underline{a} \cdot \underline{r}}{r^{3}}\right)=\frac{\underline{a}}{r^{3}}-\frac{3(\underline{a} \cdot \underline{r})}{r^{5}} \underline{r}$,
ii. $\operatorname{curl}\left(\frac{\underline{a} \wedge \underline{r}}{r^{3}}\right)=\frac{2 \underline{a}}{r^{3}}+\frac{3 \underline{a} \wedge \underline{r}}{r^{5}} \wedge \underline{r}$.
3. (a) State the Divergence theorem and use it to evaluate $\iint_{S} \underline{A} \cdot \underline{n} d S$, whe $A=2 x^{2} y \underline{i}-y^{2} \underline{j}+4 x z^{2} \underline{k}$ and S is the surface of the cylinder $x^{2}+y^{2}=9$ includ in the first octant between $x=0$ and $x=2$.
(b) State the Green's Theorem.

Verify the Green's theorem in plane for

$$
\int_{C}\left[\left(x^{2}-x y^{3}\right) d x+\left(y^{2}-2 x y\right) d y\right]
$$

where C is in the square with vertices $(0,0),(2,0),(2,2),(0,2)$.
4. Prove that the radial and transverse component of the acceleration of a particlêinog plane in terms of polar co-ordinates (r, θ) are

$$
\ddot{r}-r \dot{\theta}^{2} \text { and } \frac{1}{\mathrm{r}} \frac{\mathrm{~d}}{\mathrm{dt}}\left(\mathrm{r}^{2} \dot{\theta}\right) \text { respectively. }
$$

(a) The velocities of a particle along and perpendicular to a radius vector from a fixed origin are λr^{2} and $\mu \theta^{2}$. Find the polar equation of the path of the particle and also the components of acceleration in terms of r and θ.
(b) A light inextensible string of length $2 a$ passes through a smooth ring at a point O, on a smooth horizontal table and two particles, each of mass m, attached to it's ends A and B. Initially the particles lie on the table with $O A=O B=a$ and $A O B$ a straight line, the particle A is given a velocity u in a direction perpendicular to $O A$. Prove that, if r and θ are the polar co-ordinates of A at a time t with respect to the origin, then
i. $2 \frac{d^{2} r}{d t^{2}}-\frac{a^{2} u^{2}}{r^{3}}=0$
ii. $2 r \frac{d r}{d t}=u \sqrt{2\left(r^{2}-a^{2}\right)}$,
iii. $r^{2}=a^{2}+\frac{1}{2} u^{2} t^{2}$.

Find the velocity of A at the instant when B reaches the origin at O.
5. A particle moves in a plane with velocity v and the tangent to the path of the particle makes an angle ψ with a fixed line in the plane. Prove that the components of the acceleration of the particle along the tangent and perpendicular to it are $\frac{d v}{d t}$ and $v \frac{d \psi}{d t}$ respectively.

A body attached to a parachute is released from an aeroplane which is moving horizontally with velocity v_{0}. The parachute exerts a drag opposing motion which is k times the weight of the body, where k is a constant. Neglecting the air resistance to the motion of the body, prove that if v is the velocity of the body when its path is inclined an angle ψ to the horizontal, then

$$
v=\frac{v_{0} \sec \psi}{(\sec \psi+\tan \psi)^{k}}
$$

Prove that if $k=1$, the body cannot have a vertical component of velocity grater than $\frac{v_{0}}{2}$.
6. Establish the equation

$$
F(t)=m(t) \frac{d v}{d t}+v_{0} \frac{d m(t)}{d t}
$$

for the motion of a rocket of varying mass $m(t)$ moving in a straight line with velocity \underline{v} under a force $\underline{F}(t)$, matter being emitted at a constant rate with a velocity $\underline{v_{0}}$ relative to the rocket.
(a) A rocket of total mass m contains fuel of mass ϵm ($0<\epsilon<1$). This fuel burns at a constant rate k and the gas is ejected backward with the velocity u_{0} relative to the rocket. Find the speed of the rocket when the fuel has been completely burnt.
(b) A rain drop falls from rest under gravity through a stationary cloud. The mass of the rain drop increases by absorbing small droplets from the cloud. The rate of increment is $m r v$, where m is the mass, v is the speed and r is a constant. Show that after the rain drop fallen a distance $x, r v^{2}=g\left(1-e^{-2 r x}\right)$.

