

EASTERN UNIVERSITY, SRI LANKA

EXTERNAL DEGREE EXAMINATION IN SCIENCE

FIRST YEAR FIRST SEMESTER -2004/2005
(May/ Jun., 2008)
MT 106-TENSOR CALCULUS (Proper and Repeat)

1. (a) Write the transformation equation for the following tensors:
i. $A_{q r}^{m s}$,
ii. $B_{m n}^{p q r}$,
iii. $C_{i j k}$.
(b) Let $A_{r a}^{p q}$ be a tensor.
i. Choose $p=t$ and show that $A_{r s p}^{p q}$, where the summation convention is employed, is a tensor. What is it rank?
ii. Choose $p=t$ and $q=s$ and show similarly that $A_{r q p}^{p q}$ is a tensor. What is its rank?
(c) Find g and $g^{j k}$ corresponding to the line element

$$
d s^{2}=5\left(d x^{1}\right)^{2}+3\left(d x^{2}\right)^{2}+4\left(d x^{3}\right)^{2}-6 d x^{1} d x^{2}+4 d x^{2} d x^{3}
$$

2. (a) Define the following:
$800 S$ i. Christoffel symbols of the first and second kind; ii. 'Geodesic.
(b) Determine the Christoffel's symbol of second kind for the metric

$$
d s^{2}=d \rho^{2}+\rho^{2} d \phi^{2}+d z^{2}
$$

and the corresponding differential equations for geodesic.
(c) With usual notations, prove the following:
i. $[p q, r]=g_{r}, \Gamma_{p q}^{\prime} ;$
ii. $[p r, q]+[q r, p]=\frac{\partial g_{p q}}{\partial x^{r}}$;
iii. $\frac{\partial g^{p q}}{\partial x^{r}}+g^{p} \Gamma_{r}^{q}+g^{q} \Gamma_{r}^{p}=0$.

Hence show that $g_{p q} ; r=0$.

