

EASTERN UNIVERSITY, SRI LANKA EXTERNAL DEGREE FIRST EXAMINATION IN SCIENCE(2003/2004) SECOND SEMESTER (October, 2007) EXTMT 102 - REAL ANALYSIS

(Proper & Repeat)

Answer all questions

Time : Three hours

- Q1. (a) i. Define the terms "Supremum" and "Infimum" of a non-empty subset of \mathbb{R} .
 - ii. State the completeness property of R.
 - (b) Prove that an upper bound u of a non-empty bounded above subset S of ℝ is the supremum of S if and only if for every ε > 0, there exists x ∈ S such that x > u - ε.
 - (c) i. Let S be a non-empty bounded above subset of \mathbb{R} and let $a \in \mathbb{R}$. Define the set $a + S = \{a + x : x \in S\}$. Show that,

$$\sup(a+S) = a + \sup S.$$

ii. Find, if they exist, the Supremum and Infimum of the set $\left\{\frac{2}{17}\left(1-\frac{1}{11^n}\right):n\in\mathbb{N}\right\}$.

Q2. (a) State and prove the Archimedean property. Hence prove the following:

- i. If $x \in \mathbb{R}$, then there exists a unique element $n \in \mathbb{Z}$ such that $n \leq x \leq n+1$.
- ii. If $x, y \in \mathbb{R}$ with x < y, then there exists a rational number p such that x and hence <math>x < q < y for some irrational number q.
- (b) Define the "Inductive set".

Prove that \mathbb{N} is the smallest inductive set.

- Q3. (a) Define what is meant by each of the following terms as applied to a sequence of real number.
 - i. bounded;
 - ii. convergent;
 - iii. monotonic.
 - (b) Prove that, a monotone sequence $(x_n)_{n=1}^{\infty}$ of real numbers is convergent if and only if it is bounded.
 - (c) Let a sequence $(y_n)_{n=1}^{\infty}$ be defined inductively by

$$y_1 = 1, \ y_{n+1} = \frac{1}{4}(2y_n + 3), \ \forall \ n \in \mathbb{N}.$$

Show that

- i. $y_n < 2, \forall n \in \mathbb{N}.$
- ii. $(y_n)_{n=1}^{\infty}$ is strictly increasing.

Deduce that $(y_n)_{n=1}^{\infty}$ converges and find its limit.

- Q4. (a) Define the term "Cauchy sequence" of real numbers.
 - (b) Show that $(x_n)_{n=1}^{\infty}$ is a Cauchy sequence if and only if it is convergent.
 - (c) Prove that every Cauchy sequence is bounded.Is the converse of this result is true? Give reasons for your answer.
 - (d) Determine whether each of the following is a Cauchy sequence.

i.
$$\left(\frac{1}{n^2}\right)_{n=1}^{\infty};$$

ii. $\left(n + \frac{(-1)^n}{n}\right)_{n=1}^{\infty}.$

Q5. (a) Let $f : \mathbb{R} \to \mathbb{R}$ be any function. Explain what is meant by the statement that the function f is continuous at 'a' $(\in \mathbb{R})$.

Prove that if f is continuous at 'a', then the function |f| is also continuous at 'a'.

Is the converse of this result is true? Give reasons for your answer.

- (b) Prove that a function g: ℝ → ℝ is continuous at 'a' (∈ ℝ) if and only if for every sequence (x_n)[∞]_{n=1} in ℝ that converges to 'a', the sequence (f(x_n))[∞]_{n=1} converges to f(a).
 - (c) Let $f : \mathbb{R} \to \mathbb{R}$ be defined by

$$f(x) = \left\{egin{array}{ccc} 1 & ext{if} & x \in \mathbb{Q}, \\ 0 & ext{if} & x \in \mathbb{Q}^{c}, \end{array}
ight.$$

show that f is not continuous at every point of \mathbb{R} .

Q6. (a) State what is meant by the statement that a function $f : \mathbb{R} \to \mathbb{R}$ is differentiable at $a' \in \mathbb{R}$.

1.

- (b) State Rolle's theorem and use it to prove the Mean-Value theorem.
- (c) Suppose that f : [a, b] → ℝ and g : [a, b] → ℝ are differentiable functions on [a, b] and that f'(x) = g'(x) for all x ∈ (a, b). Prove that there exists a constant k such that f(x) = g(x) + k for all x ∈ [a, b].
- (d) Let a function $f : \mathbb{R} \to \mathbb{R}$ be differentiable on \mathbb{R} such that $f'(\alpha) = 0$ for some $\alpha \in \mathbb{R}$. Suppose that $f''(\alpha)$ exists. prove that if $f''(\alpha) > 0$, then f has a minimum at $x = \alpha$.