

EASTERN UNIVERSITY, SRI LANKA EXTERNAL DEGREE SECOND EXAMINATION

IN SCIENCE 2002/2003

Oct./Nov.' 2007

SECOND SEMESTER

EXTMT 202 - METRIC SPACE

Answer all questions

Time:Two hours

- Q1. (a) Define the following:
 - i. Metric Space;
 - ii. Complete Metric Space.
 - (b) Let X be a set of all bounded sequence of real numbers. Define $d: X \times X \longrightarrow \mathbb{R}$ by

 $d(x, y) = \sum_{i=1}^{\infty} \frac{|x_i - y_i|}{2^i},$

where $x = \{x_i\}_{i \in \mathbb{N}}$ and $y = \{y_i\}_{i \in \mathbb{N}}$ are two arbitrary elements of X. Show that (X, d) is a metric space.

- (c) Prove that every open ball is an open set.
- (d) Prove that R with the usual metric is complete.
- Q2. (a) Let (X, d) be a metric space and let $A \subseteq X$. Define the term Closure of A. Prove that, the closure of A is the smallest closed set containing A.
 - (b) Let A, B be any two subsets of a metric space (X, d). Prove that
 - i. $(A^{\circ} \cap B^{\circ}) = (A \cap B)^{\circ}$.
 - ii. $(A^o \cup B^o) \subseteq (A \cup B)^o$.

Give an example to show $(A^{\sigma} \cup B^{\sigma}) \neq (A \cup B)^{\sigma}$

- (c) Let (X, d) be a metric space and let $A \subseteq X$. Define the term frontier point of A. Prove that $Fr(A) = \overline{A} \cap \overline{A^C}$.
- Q3. (a) Define the following:
 - i. Connected Set;
 - ii. Compact Set.
 - (b) Let (Y, d_Y) be a subspace of a metric space (X, d). Prove that Y is connected if and only if the only subset of Y both open and closed in Y is Y itself.
 - (c) Show that [a, b] is compact in $(\mathbb{R}, |.|)$.
 - (d) Let $X = \mathbb{R}$ and d the usual metric. Prove that (0, 1) is a compact set in (\mathbb{R}, d) Justify your answer.
- Q4. (a) Let (X, d_1) and (Y, d_2) be any two metric spaces and $f: X \longrightarrow Y$ be a function. Prove that f is continuous at $a \in X$ if and only if for every sequence $\{a_n\}_{n=1}^{\infty}$ in X converging to a we have $\{f(a_n)\}_{n=1}^{\infty}$ converging to f(a).
 - (b) Let (X, d_1) and (Y, d_2) be two metric spaces. Prove that $f: X \longrightarrow Y$ is continuous if and only if $f^{-1}(G)$ is open in X whenever G is open in Y.
 - (c) Show that $f: \mathbb{R} \longrightarrow \mathbb{R}$ defined by $f(x) = x \ \forall x \in \mathbb{R}$ is continuous on \mathbb{R} , where (\mathbb{R}, d) is the usual metric space.
 - (d) Let (X, d_Y) be a discrete metric space and let (Y, d_Y) be any metric space. Prove that every function from X to Y is continuous on X.
 - (e) Prove that $f: X \longrightarrow Y$ is continuous if and only if $f(\overline{A}) \subseteq \overline{f(A)} \quad \forall A \subseteq X$.