EASTERN UNIVERSITY, SRI LANKA
EXTERNAL DEGREE SECOND EXAMINATION IN SCIENCE (2002/2003)

SECOND SEMESTER (Oct./Nov., 2007)

EXTMT 217 - MATHFMATICAL MODELING

Answer all questions

Time: Two hours

1. Write down the steps involved in a mathematical model building process.

Sate the Newton's law of cooling.
At 1.00 pm , Mary puts into a refrigerator a can of soda that has been sitting in a room of temperature $70^{\circ} \mathrm{F}$. The temperature in the refrigerator is $40^{\circ} \mathrm{F}$. Fifteen minutes later, at $1: 15 \mathrm{pm}$; the temperature of the soda has fallen to $60^{\circ} \mathrm{F}$. At some later time, Mary removes the soda from the refrigerator to the room, where at $2: 00 \mathrm{pm}$ the temperature of the soda is $60^{\circ} \boldsymbol{F}$. At what time \gtreqless did Mary remove the soda from the refrigerator?
2. (a) Explain the logistic model

$$
\frac{d p}{d t}=a p-b p^{2}, \quad p\left(t_{0}\right)=p_{0}
$$

of the population growth of a single species.

Prove that $\frac{a-b p_{0}}{a-b p(i)}$ is positive for $t_{0}<t<\infty$ where $p\left(t_{0}\right)=p_{0}$.

Find $p(t)$ and the limiting value of $p(t), t>t_{0}$.
(b) A man eats a diet of $2500 \mathrm{cal} /$ day, 1200 of them go to basal metabolism (i.e., get used up automatically). He spends approximately $16 \mathrm{cal} / \mathrm{kg} /$ day times his body, weight (in kilograms) in weight proportional exercise. Assume that the storage of calories as fat is 100% efficient and that 1 kg fat contains 10000 cal. Find how his weight various with time.
3. Suppose a x-force and a. y-force are engaged in combat. Let $x(t)$ and $y(t)$ denote the respective strength of the forces at time t, when t is measured in days from the start of the combat. Conventional combat model is given by

$$
\begin{aligned}
& \frac{d x}{d t}=-a x(t)-b y(t)+P(t) \\
& \frac{d y}{d t}=-d y(t)-c x(t)+Q(t)
\end{aligned}
$$

Explain the terms involved in these equations.
By assuming that there is no reinforcement arrived and no operational losses occur, obtain a simplified model and sketch the graph. Hence show that

$$
x(t)=x_{0} \cosh (\beta t)-\gamma y_{0} \sinh (\beta t)
$$

where $\beta=\sqrt{b c}$ and $\gamma=\sqrt{b / c}$.
4. Consider n vehicles traveling in a straight line. If $V_{n}(t)$ is the speed of $n^{t h}$ vehicle at time t, obtain the model

$$
\frac{d}{d t} V_{n+1}=V_{n}(t)-V_{n+1}(t)
$$

Interpret this equẵtion and show that

$$
V_{n+1}(t)=\frac{1}{(n+1)!} \int_{0}^{t} u^{n-1} e^{-u} V_{1}(t-u) d u
$$

where $V_{1}(t)$ is the speed of the lead vehicle.
Suppose the lead vehicle is standing still at $t=0$ and acquires a constant cruising speed V_{c} for $t>0$.

Show that

$$
V_{n+1}(t)=V_{c} G_{n}(t),
$$

where $G_{n}(t)=1-e^{-t}\left(1+\frac{t}{1!}+\frac{t^{2}}{2!}+\ldots .+\frac{t^{n-1}}{(n-1)!}\right)$.
Show that there is no possibility of collision in this model.

