

EASTERN UNIVERSITY, SRI LANKA
 EXTERNAL DEGREE SECOND EXAMINATION IN SCIENCE - 2002/2003
 SECOND SEMESTER(October/November, 2007)
 EXTMT 218 - FTELD THEORY

Answer all Questions

Time: Two hours

Q1. (a) With the usual notations, prove that

$$
\vec{E}=-\vec{\nabla} \phi
$$

Hence, show that

$$
\phi=\frac{Q}{4 \pi \varepsilon_{o} r}
$$

[40 marks]
(b) A potential distribution is given by the expression
i

$$
\phi=\frac{20}{\left(x^{2}+y^{2}+z^{2}\right)}
$$

Determine the electric field intensity \vec{E} in the general form and also the particular value at the point $(5,3,0)$. [40 marks]
(c) What is meant by the following mathematical interpretation? Explain it.

$$
\oint \vec{E} \cdot d \overrightarrow{d r}=0 . \quad[20 \text { marks }]
$$

Q2. (a) State Gauss law of the electric field and write down its integral form for a continuous charge density.
[20 marks]
: (b) Obtain Possion's equation using part (a) and hence, find the relation potential if it is a function of r, distance along the radial direction, only.
(c) A uniform volume charge distribution of -10^{-8} coulomh $/ \mathrm{m}^{3}$ occupies the regi between two co-axial conducting cylinders of radii 20 and 50 mm . If the elect field and potential are both zero on the inner cylinder, find the potential the outer cylinder. [Use the result obtained in part (b)]
[35 max

Q3. (a) Write down the integral and differential forms of Ampere's law of magne field.
[20 man
(h) Using Ampere's Law, prove that the following result:
(i) $\vec{\nabla} \times \vec{H}=\vec{J}$;
(ii) $\oint_{c} \vec{H} \cdot \overrightarrow{d s}=I$;
where \vec{H} and \vec{J} are magnetic field strength and current density, respectivel [50 mar
(c) Show that the magnetic field B due to an infinitely long conductor carrying steady current i through it, is,

$$
B=\frac{\mu_{a} i}{2 \pi a}
$$

where a is the radius of the loop.

Q4. (a) Write down the Kepler's law of planetary motion.
(b) Consider a particle of small mass m moves around another particle of la: mass M. The mass m is attracted by M and M to be at rest. If (r, θ) ist polar coordinate of m with respect to M and G is the gravitational constar prove that

$$
\frac{d^{2} u}{d \theta^{2}}+u=\frac{G M}{l^{2}}
$$

where $u=\frac{1}{r}$ and l is a constant. If the general solution of the differenti equation above is

$$
u=c \cos \left(\theta+\theta_{0}\right)+\frac{G M}{l^{2}}
$$

where c and θ_{0} are arbitrary constants, prove that

$$
s=\frac{l^{2}}{G M} \text { and } e=\frac{c l^{2}}{G M}
$$

where s and e are the semi-latus rectum and eccentricity of the conic shape

$$
r=\frac{s}{(1+e \cos \theta)},
$$

respectively. What can you say about the path of the mass m ?

