(Proper)

Answer All questions
Time: Three hours

Q1. Define what is meant by a vector space.
(a) Let $M_{m \times n}$ be the set of all real $m \times n$ matrices. For any two matrices $A=\left[a_{i j}\right]_{m \times n}$ and $B=\left[b_{i j}\right]_{m \times n}$ in $M_{m \times n}$, and for any $\alpha \in \mathbb{R}$ define an addition \oplus and scalar multiplication \odot as follows:

$$
\begin{gathered}
{\left[a_{i j}\right]_{m \times n} \oplus\left[b_{i j}\right]_{m \times n}=\left[a_{i j}+b_{i j}\right]_{m \times n}} \\
\alpha \odot\left[a_{i j}\right]_{m \times n}=\left[\alpha a_{i j}\right]_{m \times n}
\end{gathered}
$$

Prove that ($M_{m \times n}, \oplus, \odot$) is a vector space over the field \mathbb{R}.
(b) Let W_{1} and W_{2} be two subspaces of a vector space V over a field \mathbb{F} and let A_{1} and A_{2} be non-empty subsets of V. Show that
(i) $W_{1}+W_{2}$ is the smallest subspace containing both W_{1} and W_{2},
(ii) if A_{1} spans W_{1} and A_{2} spans W_{2} then $A_{1} \cup A_{2}$ spans $W_{1}+W_{2}$.
(c) Let V be the vector space of all functions from real field \mathbb{R} into \mathbb{R}. Which of the following subsets are subspaces of V ? Justify your answer.
(i) $W_{1}=\{f \in V: f(3)=0\}$,
(ii) $W_{2}=\{f \in V: f(7)=f(1)\}$,
(iii) $W_{3}=\{f \in V: f(-x)=f(x), \forall x \in \mathbb{R}\}$.

Q2. (a) Define the following:
i. A linearly independent set of vectors,
ii. A basis for a vector space,
iii. Dimension of a vector space.
(b) Let V be an n-dimensional vector space. Show that
i. A linearly independent set of vectors of V with n elements is a basis for V,
ii. Any linearly independent set of vectors of V may be extended as a basis for V,
iii. If L is a subspace of V, then there exists a subspace M of V such that $V=L \oplus M$.

Q3. (a) Let T be a linear transformation from a vector space V into another vector space W. Define
(i) Range space $R(T)$,
(ii) Null space $N(T)$.

Find $R(T)$ and $N(T)$ of the linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, defined by $T(x, y, z)=(2 x+y+3 z, 3 x-y+z,-4 x+3 y+z)$.
Verify the equation $\operatorname{dim} V=\operatorname{dim}(R(T))+\operatorname{dim}(N(T))$ for this linear transformation.
(b) Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation defined by
$T(x, y)=(x+2 y, 2 x-y,-x)$ and let $B_{1}=\{(0,1),(1,1)\}$ and $B_{2}=\{(1,1,0),(0,1,1),(1,0,1)\}$ be bases for \mathbb{R}^{3}. Find
(i) The matrix representation of T with respect to the basis B_{1},
(ii) The matrix representation of T with respect to the basis B_{2} by using the transition matrix,
(iii) The matrix representation of T with respect to the basis B_{2} directly.

Q4. (a) Define the following terms
(i) Rank of a matrix,
(ii) Echelon form of a matrix,
(iii) Row reduced echelon form of a matrix.

(b) Let A be an $m \times n$ matrix. Prove that
(i) row rank of A is equal to column rank of A,
(ii) if B is an $m \times n$ matrix obtained by performing an elementary row operation on A, then $r(A)=r(B)$.
(c) Find the rank of the matrix

$$
\left(\begin{array}{ccccc}
1 & 3 & -2 & 5 & 4 \\
1 & 4 & 1 & 3 & 5 \\
1 & 4 & 2 & 4 & 3 \\
2 & 7 & -3 & 6 & 13
\end{array}\right)
$$

(d) Find the row reduced echelon form of the matrix

$$
\left(\begin{array}{cccc}
-1 & 3 & -1 & 2 \\
0 & 11 & -5 & 3 \\
2 & -5 & 3 & 1 \\
4 & 1 & 1 & 5
\end{array}\right)
$$

Q5. (a) Define the following terms as applied to an $n \times n$ matrix $A=\left(a_{i j}\right)$.
(i) Cofactor $A_{i j}$ of an element $a_{i j}$
(ii) Adjoint of A.

Prove that

$$
A \cdot(\operatorname{adj} A)=(\operatorname{adj} A) \cdot A=\operatorname{det} A \cdot I
$$

where I is the $n \times n$ identity matrix.
(b) If $A=\left[\begin{array}{llll}1 & x & x^{2} & x^{3} \\ 1 & y & y^{2} & y^{3} \\ 1 & z & z^{2} & z^{3} \\ 1 & w & w^{2} & w^{3}\end{array}\right]$, show that
$\operatorname{det} A=(x-y)(x-z)(x-w))(y-z)(y-w)(z-w)$.
(c) Find the inverse of the matrix

$$
\left[\begin{array}{rcr}
-1 & 2 & -3 \\
2 & 1 & 0 \\
4 & -2 & 5
\end{array}\right]
$$

Q6. (a) State the necessary and sufficient condition for a system of linear equations to be consistent.
Consider the following system of linear equations

$$
\begin{aligned}
& a x+b y=e \\
& c x+d y=f
\end{aligned}
$$

Reduce the augmented matrix of the above system of linear equations to its row reduced echelon form and hence determine the conditions on a, b, c, d, e and f such that the system has
(i) a unique solution,
(ii) no solution,
(iii) more than one solution.
(b) State and prove Crammer's rule for 3×3 matrix and use it to solve

$$
\begin{aligned}
x_{1}+2 x_{2}-x_{3} & =-4 \\
3 x_{1}+5 x_{2}-x_{3} & =-5 \\
2 x_{1}+x_{2}+2 x_{3} & =5
\end{aligned}
$$

(c) For what value of λ does the system

$$
\begin{array}{r}
x+y+t=4 \\
2 x-4 t=7 \\
x+y+z=5 \\
x-3 y-z-10 t=\lambda
\end{array}
$$

has a solution. Find the general solution of the above system for this value of λ.

