EASTERN UNIVERSITY, SRI LANKA
 SECOND EXAMINATION IN SCIENCE 2002/03 (OCT-DEC. 2006)
 FIRST SEMESTER
 EXTERNAL DEGREE

 EXTPH 201 - ATOMIC PHYSICS AND QUANTUM MECHANICS

 EXTPH 201 - ATOMIC PHYSICS AND QUANTUM MECHANICS}

Time: 02 hours.
Answer ALL Questions.

You may use the following information.

> Electron charge $e=1.6 \times 10^{-19} \mathrm{C}$ Permittivity in free space $\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{Fm}^{-1}$
> Velocity of light $c=3 \times 10^{8} \mathrm{~ms}^{-1}$
> Planck's constant $h=6.625 \times 10^{-34} \mathrm{JS}$

1. Derive Rutherford's Scattering formula and mention the important features of Rutherford's Scattering of α-particles by gold foil which supported the nuclear model of the atom against Thomson's model.

Calculate the distance of closest approach when α particles of energy 5 MeV are scattered back by a thin sheet of copper $(Z=29)$.
02. Briefly explain the nature of the Zeeman effect in a magnetic field.

A sample of atomic hydrogen is placed in a magnetic field strength B. If the hydrogen atom makes a transition from $n=2$ to $n=1$ state, three spectral lines are emitted. If the wavelength of the radiation emitted by this transition in the absence of the magnetic field is λ_{0}, when in the presence of a weak magnetic field, show that the change in frequency of the spectral lines is given by $\Delta \gamma= \pm \frac{e B}{4 m \pi}$.
03. (a) Explain what is photoelectric effect and establish Einstein's photoelectric effect equation.
A cerfain photo tube requires 1 volt to serve as the stopping potential for light o wavelength $500 A^{0}$. If the light has the wavelength of $3750 A^{0}$ the stopping potential is 1.82 volts. Calculate $\frac{h}{e}$ from this data.
(b) State and explain the Heisenberg's uncertainty principle.

Find the smallest possible uncertainty in the position of an electron moving with velocity $3 \times 10^{7} \mathrm{~ms}^{-1}$.
04. (a) The wave function of the electron in a hydrogen atom is given by

$$
\psi(r)=A e^{-\left(\frac{r}{a}\right)} \text {, where } A \text { and } a \text { are constant. }
$$

Estimate,
(i) the normalization constant
(ii) expectation value of r

You may assume that $\int_{0}^{\infty} r^{n} e^{-\left(\frac{r}{a}\right)} d r=n!a^{n+1}$.
(b) (i) Write down the time-independent Schrödinger equation in a rectangula Cartesian Co-ordinate system, for a particle of mass m and the energy B moving in a potential V.
(ii) Calculate the possible values of energies for an electron in an atom which mal be considered as a particle moving inside an infinite square potential wello width a, described by

$$
\begin{aligned}
& V=0,0 \leq x \leq a \\
& V=\infty,|x| \geq a
\end{aligned}
$$

