EASTERN UNIVERSITY, SRI LANKA
 FIRST EXAMINATION IN SCIENCE 2002/2003 (EXTERNAL DEGREE) (SECOND SEMESTER)

 1 EXTPH 104 AC THEORY

 1 EXTPH 104 AC THEORY}

Time : 1 Hour
Answer All Questions

1. (a). Write down expressions for capacitive and inductive reactance
(i) $\quad 0.3 \mathrm{H}$ inductor has a resistance 6000Ω when connected to an AC power supply. What is the frequency of the supply?
(ii) A capacitor with capacitance $0.1 \mu \mathrm{~F}$ is connected to $100 \mathrm{~V}, 50 \mathrm{~Hz}$ supply Calculate the reactance of the capacitor and the current flowing through the capacitor.
(b). 50Ω resistor is connected in series with a $1 \mu \mathrm{~F}$ capacitor and this combination is connected to a $200 \mathrm{~V}, 1000 \mathrm{~Hz}$ supply. Calculate
(i) the circuit impedance
(ii) the circuit current
(iii) the phase angle
(iv) the voltages across the capacitor and the resistor.
2. A resistor with resistance R, a capacitor with capacitance C and an inductor with inductance L are connected in series to a power supply of voltage V and frequency f. Determine

(i) the circuit impedance
(ii) the phase angle

When the circuit is at resonance determine the above values and the resonant frequency. Determine the voltages across C and L at resonance.

If $\mathrm{R}=100 \Omega, \mathrm{C}=0.1 \mu \mathrm{~F}, \mathrm{~L}=0.01 \mathrm{H}$ and $\mathrm{V}=100 \mathrm{~V}$ calculate
(i) Resonant frequency
(ii) Circuit current at resonance
(iii) Q - factor of the circuit.

