EASTERN UNIVERSITY, SRI LANKA FIRST EXAMINATION IN SCIENCE (2002/2003)

EXTERNAL DEGREE

Sept./Auct. 2005

SECOND SEMESTER

MT 102 - ANALYSIS I

Answer all questions

Time: Three hours

- 1. (a) i. Define the terms "Supremum" and "Infimum" of a non-empty subset of \mathbb{R} .
 - ii. State the completeness property of \mathbb{R} . [20]
 - (b) Prove that an upper bound u of a non-empty bounded above subset S of ℝ is the supremum of S if and only if for every ε > 0, there exists x ∈ S such that x > u − ε.

State the corresponding result for infimum. [30]

(c) i. Let A and B be two non-empty bounded sets of real numbers. Let C be the set of all numbers c = a + b, where a ∈ A, b ∈ B.
Prove that Sup C=Sup A + Sup B. [35]

iii Find the Supremum and Infimum of the set $\left\{\frac{2}{17}\left(1-\frac{1}{11^n}\right):n\in\mathbb{N}\right\}$, if they exist. [15]

- (a) Define what is meant by each of the following terms applied to a sequence of real numbers.
 - i. bounded
 - ii. convergent
 - iii. monotone
 - (b) Prove that, a monotone sequence (x_n) of real numbers is convergent if and only if it is bounded. [30]

[30]

(c) Let a sequence (x_n) be defined inductively by

$$x_1 = 4, \ x_{n+1} = \frac{1}{10} \left(x_n^2 + 21 \right), \ n \in \mathbb{N}.$$

Show that

i. $3 < x_n < 7$ for all $n \in \mathbb{N}$.

ii. (x_n) is a decreasing sequence.

Deduce that (x_n) converges and find its limit. [40]

- 3. (a) i. Let $f : \mathbb{R} \to \mathbb{R}$ be a function. What is meant by the function f has a limit $l \in \mathbb{R}$ at a point "a" $(\in \mathbb{R})$.
 - ii. Show that if $\lim_{x \to a} f(x) = l$, then $\lim_{x \to a} |f(x)| = |l|$. Is the converse of this result true? Justify your answer. [35]

(b) i. Let f : A(⊆ ℝ) → ℝ, prove that lim f(x) = l if and only if for every sequence (x_n) in A with x_n → a as n → ∞ such that x_n ≠ a ∀ n ∈ ℕ,
we have f(x_n) → l as n → ∞. [35]

we have $f(x_n) \to l$ as $n \to \infty$. [35] ii. Let $g : \mathbb{R} \to \mathbb{R}$ be defined by $g(x) = \begin{cases} x & \text{if } x \text{ is rational} \\ 0 & \text{if } x \text{ is irrational} \end{cases}$ Show that the function g has a finite limit only at x = 0. [30]

- 4. (a) i. Write the (ϵ, δ) definition of the statement that $f : \mathbb{R} \to \mathbb{R}$ is continuous at a point "a" $(\in \mathbb{R})$.
 - ii. Show that, if f is continuous at 'a' and f(a) > 0 then there exist some $\delta > 0$ such that $f(x) > \frac{f(a)}{2}$ for all x satisfying $|x - a| < \delta$. [40]
 - (b) i. If f : [a, b](⊆ ℝ) → ℝ is continuous on [a, b] then prove that it is bounded on [a, b].
 - Is the converse part true? Justify your answer. [40]
 - ii. Prove that function $f : \mathbb{R} \to \mathbb{R}$ defined by,

$$f(x) = \begin{cases} \sin \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

is not continuous at x = 0.

[20]

[10]

- 5. (a) State what is meant by the statement that a function $f : \mathbb{R} \to \mathbb{R}$ is
 - i. differential at $a \in \mathbb{R}$,
 - ii. strictly decreasing at $a \in \mathbb{R}$.
 - (b) i. Prove that if a function f : R → R is differentiable at a ∈ R and f'(a) < 0, then f is strictly decreasing at a.
 Is the converse true ? Justify your answer.
 - ii. Let a function $g : \mathbb{R} \to \mathbb{R}$ be differentiable on \mathbb{R} such that g'(a) = 0for some $a \in \mathbb{R}$. Suppose that g''(a) exists. Prove that if g''(a) > 0, then g has a maximum at x = a. [90]

6.

(a) Suppose that both real-valued functions f and g are continuous on [a, b], differentiable on (a, b) and g'(x) ≠ 0 ∀ x ∈ (a, b).
Prove that, for some c ∈ (a, b),

$$\frac{f'(c)}{g'(c)} = \frac{f(b) - f(a)}{g(b) - g(a)}.$$

If f(d) = g(d) = 0 for some $d \in (a, b)$, deduce that $\lim_{x \to d} \frac{f'(x)}{g'(x)} = \lim_{x \to d} \frac{f(x)}{g(x)}$. Evaluate the foll.

- (b) Evaluate the following limits
 - i. $\lim_{x \to 1} \left(\frac{1}{\log x} \frac{1}{x 1} \right)$ ii. $\lim_{x \to \infty} \left(x - \sqrt{1 + x^2} \right)$ iii. $\lim_{x \to \infty} x \log \left(1 + \frac{1}{x} \right).$

[45]