EASTERN UNIVERSITY, SRI LANKA

FIRST EXAMINATION IN SCIENCE (2002/2003)

EXTERNAL DEGREE

Sept./Auct. 2005
SECOND SEMESTER
MT 102 - ANALYSIS I

1. (a) i. Define the terms "Supremum" and "Infimum" of a non-empty subset of \mathbb{R}.
ii. State the completeness property of \mathbb{R}.
(b) Prove that an upper bound u of a non-empty bounded above subset S of \mathbb{R} is the supremum of S if and only if for every $\epsilon>0$, there exists $x \in S$ such that $x>u-\epsilon$.

State the corresponding result for infimum.
(c) i. Let A and B be two non-empty bounded sets of real numbers. Let C be the set of all numbers $c=a+b$, where $a \in A, b \in B$. Prove that $\operatorname{Sup} C=\operatorname{Sup} A+\operatorname{Sup} B$.
ii* Find the Supremum and Infimum of the set $\left\{\frac{2}{17}\left(1-\frac{1}{11^{n}}\right): n \in \mathbb{N}\right\}$, if they exist.
2. (a) Define what is meant by each of the following terms applied to a sequence of real numbers.
i. bounded
ii. convergent
iii. monotone
(b) Prove that, a monotone sequence $\left(x_{n}\right)$ of real numbers is convergent if and only if it is bounded.
(c) Let a sequence $\left(x_{n}\right)$ be defined inductively by

$$
x_{1}=4, x_{n+1}=\frac{1}{10}\left(x_{n}^{2}+21\right), n \in \mathbb{N}
$$

Show that
i. $3<x_{n}<7$ for all $n \in \mathbb{N}$.
ii. $\left(x_{n}\right)$ is a decreasing sequence.

Deduce that $\left(x_{n}\right)$ converges and find its limit.
3. (a) i. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function. What is meant by the function f has a limit $l \in \mathbb{R}$ at a point " a " $(\in \mathbb{R})$.
ii. Show that if $\lim _{x \rightarrow a} f(x)=l$, then $\lim _{x \rightarrow a}|f(x)|=|l|$. Is the converse of this result true? Justify your answer.
(b) i. Let $f: A(\subseteq \mathbb{R}) \rightarrow \mathbb{R}$, prove that $\lim _{x \rightarrow a} f(x)=l$ if and only if for every sequence $\left(x_{n}\right)$ in A with $x_{n} \rightarrow a$ as $n \rightarrow \infty$ such that $x_{n} \neq a \forall n \in \mathbb{N}$, we have $f\left(x_{n}\right) \rightarrow l$ as $n \rightarrow \infty$.
ii. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $g(x)= \begin{cases}x & \text { if } x \text { is rational } \\ 0 & \text { if } x \text { is irrational }\end{cases}$ Show that the function g has a finite limit only at $x=0$.
4. (a) i. Write the (ϵ, δ) definition of the statement that $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous at a point " a " $(\in \mathbb{R})$.
ii. Show that, if f is continuous at ' a ' and $f(a)>0$ then there exist some $\delta>0$ such that $f(x)>\frac{f(a)}{2}$ for all x satisfying $|x-a|<\delta$.
(b) i. If $f:[a, b](\subseteq \mathbb{R}) \rightarrow \mathbb{R}$ is continuous on $[a, b]$ then prove that it is bounded on $[a, b]$.
Is the converse part true? Justify your answer.
ii. Prove that function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by,

$$
f(x)=\left\{\begin{array}{lll}
\sin \frac{1}{x} & \text { if } & x \neq 0 \\
0 & \text { if } & x=0
\end{array}\right.
$$

is not continuous at $x=0$.
5. (a) State what is meant by the statement that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is
i. differential at $a(\in \mathbb{R})$,
ii. strictly decreasing at $a(\in \mathbb{R})$.
(b) i. Prove that if a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable at $a \in \mathbb{R}$ and $f^{\prime}(a)<0$, then f is strictly decreasing at a.
Is the converse true? Justify your answer.
ii. Let a function $g: \mathbb{R} \rightarrow \mathbb{R}$ be differentiable on \mathbb{R} such that $g^{\prime}(a)=0$ *or some $a \in \mathbb{R}$. Suppose that $g^{\prime \prime}(a)$ exists. Prove that if $g^{\prime \prime}(a)>0$, then g has a maximum at $x=a$.
6. (a) Suppose that both real-valued functions f and g are continuous on $[a, b]$, differentiable on (a, b) and $g^{\prime}(x) \neq 0 \forall x \in(a, b)$.
Prove that, for some $c \in(a, b)$,

$$
\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}
$$

If $f(d)=g(d)=0$ for some $d \in(a, b)$, deduce that $\lim _{x \rightarrow d} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow d} \frac{f(x)}{g(x)}$.
(b) Evaluate the following limits
i. $\lim _{x \rightarrow 1}\left(\frac{1}{\log x}-\frac{1}{x-1}\right)$
ii. $\lim _{x \rightarrow \infty}\left(x-\sqrt{1+x^{2}}\right)$
iii. $\lim _{x \rightarrow \infty} x \log \left(1+\frac{1}{x}\right)$.

