EASTERN UNIVERSITY, SRI LANKA

 SLCOND EXAMINATION IN SCIENCE $1996 / 97$(June/July' 2004)

EXTERNAL DEGREE

EXMT 203 \& 204 - EIGENSPACES AND QUADRATIC

FORMS \& DIFFERENTIAL GEOMETRY

Answer four questions only selecting two questions from each section

Time: Two hours

Section A

1. Define the term "an eigenvalue of a linear transformation".
(a) Prove that an $n \times n$ square matrix A is similar to a diagonal matrix D whose diagonal elements are the eigenvalues of A if, and only if A has n linear independent eigenvectors.
(b) Prove that the eigenvalues of a Hermitian matrix are real.
(c) Let

$$
A=\left(\begin{array}{ccc}
2 & 2 & -1 \\
1 & 3 & -1 \\
-1 & -2 & 2
\end{array}\right)
$$

Find an non-singular matrix P such that $P^{-1} A P$ is diagonal.
2. Define the minimum polynomial of a square matrix.
(a) State and prove the Cayley-Hamilton theorem.
(b) Let $m(t)$ be a minimum polynomial of a matrix A and $f(t)$ be a polynomial such that $f(A)=0$. Show that $m(t)$ divides $f(t)$.
(c) Find the minimum polynomial of A given by

$$
A=\left(\begin{array}{cccc}
2 & 1 & 0 & 0 \\
0 & 2 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & -2 & 4
\end{array}\right)
$$

3. (a) Find an orthogonal transformation which reduces the following quadratic form to a diagonal form

$$
5 x_{1}^{2}+6 x_{2}^{2}+7 x_{3}^{2}-4 x_{1} x_{2}+4 x_{2} x_{3} .
$$

(b) Show that one of the two quadratic forms given below is positive definite and find a non-singular linear transformation which reduces this to a unit form and the other to a diagonal form.
$\phi_{1}=x_{1}^{2}+2 x_{2}^{2}+8 x_{2} x_{3}+12 x_{1} x_{2}+12 x_{1} x_{3}$
$\phi_{2}=3 x_{1}^{2}+2 x_{2}^{2}+5 x_{3}^{2}+2 x_{2} x_{3}-2 x_{1} x_{3}$.

Section B

4. State and prove Serret-Frenet formulae.

Let C be a curve of constant torsion $\tau . P$ is any point on the curve C. Point Q is taken at a constant distance c from P on the binormal to C at P. Show that the angle between the binormal to the locus of Q and the binormal of the given curve is $\tan ^{-1}\left(\frac{c \tau^{2}}{\kappa \sqrt{1+c^{2} \tau^{2}}}\right)$.
5. What is meant by saying that a curve is a helix?

Prove, with the usual notation, that a necessary and sufficient condition for a curve to be a helix is that $\frac{\tau}{\kappa}=$ constant.
Show that the curve $r(\theta)=(a \cos \theta, a \sin \theta, a \theta \cot \beta)$ is a helix, where a and β are constants.
6. Define the term "Osculating sphere of a space curve" and find its radius and center.

Show that the tangent, principal normal and binormal to the locus C_{1} of the center of the osculating sphere of a given curve C are parallel to the binormal, principal normal and tangent to C respectively at the corresponding points.

