EASTERN UNIVERSITY, SRI LANKA

FIRST EXAMINATION IN SCIENCE 1996/97

(Jume/July' 2004) (Repeat)

EXTERNAL DEGREE

EXMT 103 \& 104 - VECTOR ALGEBRA \& CLASSICAL MECHANICS I

Answer four questions only selecting two from each section Time: Two hours

Section A

1. (a) For any three vectors $\underline{a}, \underline{b}, \underline{c}$, prove the identity

$$
\underline{a} \wedge(\underline{b} \wedge \underline{c})=(\underline{a} \cdot \underline{c}) \underline{b}-(\underline{a} \cdot \underline{b}) \underline{c} .
$$

Hence prove that

$$
(\underline{a} \wedge \underline{b}) \cdot(\underline{c} \wedge \underline{d})=(\underline{a} \cdot \underline{c})(\underline{b} \cdot \underline{d})-(\underline{a} \cdot \underline{d})(\underline{b} \cdot \underline{c}) .
$$

(b) Let $\underline{l}, \underline{m}$ and \underline{n} be three non-zero and non-coplanar vectors such that any two of them are not parallel. By Considering the vector product $(\underline{r} \wedge \underline{l}) \wedge(\underline{m} \wedge \underline{n})$, prove that any vector \underline{r} can be expressed in the form

$$
\underline{r}=(\underline{r} \cdot \underline{\alpha}) \underline{l}+(\underline{r} \cdot \underline{\beta}) \underline{m}+(\underline{r} \cdot \underline{\gamma}) \underline{n} .
$$

Find the vectors $\underline{\alpha}, \underline{\beta}, \underline{\gamma}$ in terms of $\underline{l}, \underline{m}, \underline{n}$.
(c) A yector r satisfies the equation

$$
\underline{r} \wedge \underline{b}=\underline{c} \wedge \underline{b} \text { and } \underline{r} \cdot \underline{a}=0
$$

where \underline{a} and \underline{b} are non-zero and not perpendicular vectors. Show that r can be expressed in the form

$$
\underline{r}=c-\lambda \underline{b},
$$

where λ is a scalar.
2. (a) Define the following terms.
i. The gradient of a scalar field ϕ,
ii. The divergence of a vector field \underline{F},
iii. The curl of a vector field \underline{F}.
(b) Prove the following:
i. $\operatorname{div}(\phi \underline{F})=\phi \operatorname{div} \underline{F}+\operatorname{grad} \phi \cdot \underline{F}$,
ii. $\operatorname{curl}(\phi \underline{F})=\phi \operatorname{curl} \underline{F}+\operatorname{grad} \phi \wedge \underline{F}$.
(c) Let \underline{a} be non-zero constant vector and \underline{r} be a position vector of a point such that $\underline{a} \cdot \underline{r} \neq 0$ and let n be a constant. If $\phi=(\underline{a} \cdot \underline{r})^{n}$, show that $\nabla^{2} \phi=0$ if and only if $n=0$ or $n=1$.

If $\dot{r}=|\underline{r}|$, find $\operatorname{div}\left(r^{n} \underline{r}\right)$ and $\underline{\nabla}\left(\frac{\underline{a} \cdot \underline{r}}{r^{5}}\right)$.

Hence show that

$$
\operatorname{curl}\left[\left(\frac{\underline{a} \cdot r}{r^{5}}\right) \underline{r}\right]=\frac{\underline{a} \wedge \underline{r}}{r^{5}} .
$$

3. (a) Definie the terms "Conservative vector field" and "Solenoidal vector field".

Show that

$$
\underline{F}=(2 x-y) \underline{i}+\left(2 y z^{2}-x\right) \underline{j}+\left(2 y^{2} z-z\right) \underline{k}
$$

is conservative but not solenoidal.
(b) State and prove Green's theorem.

Evaluate $\oint_{C}\left(x y+y^{2}\right) d x+x^{2} d y$ where C is the closed curve of the region bounded by $y=x$ and $y=x^{2}$.

Section B

4. Prove that the radial and transverse component of the acceleration of a particle in a plane in terms of polar co-ordinates (r, θ) are

$$
\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2} \text { and } \frac{1}{r} \frac{d}{d t}\left(r^{2} \frac{d \theta}{d t}\right)
$$

respectively.

A particle on a smooth table is attached to a string passing through a small hole in the table and carries an equal particle hanging vertically. The former particle is projected along the table at right angle to the string with velocity $\sqrt{2 g h}$ when at a distance ' a ' from the hole. If r is the distance of the former particle from the hole at time t, prove the following results:
(a) $\left(\frac{d r}{d t}\right)^{2}=g h\left(1-\frac{a^{2}}{r^{2}}\right)+g(a-r)$;
(b) The lower particle will be pulled up to the hole if $2 h>a$ and the total length of the string is less than $\frac{h}{2}+\sqrt{a h+\frac{h^{2}}{4}}$;
(c) Tension of the string is $\frac{1}{2} m g\left(1+\frac{2 a^{2} h}{r^{3}}\right)$, where m is the mass of each particle.
3. A particle moves in a plane with velocity v and the tangent to the path of the particle makes an angle ψ with a fixed line in the plane. Prove that the component of acceleration of the particle along the tangent and perpendicular to it are $\frac{d v}{d t}$ and $v \frac{d \psi}{d t}$ respectively.

A body attached to a parachute is released from an aeroplane which is moving horizontally with velocity v_{0}. The parachute exerts a drag opposing motion which is k times the weight of the body, where k is a constaint. Neglecting the air resistance to the motion of the body, prove that if v is the velocity of the body when its path is inclined an angle ψ to the horizontal, then

$$
v=\frac{v_{0} \sec \psi}{(\sec \psi+\tan \psi)^{k}}
$$

Prove that if $k=1$, the body cannot have a vertical component of velocity greater than $\frac{v_{0}}{2}$.
6. State the angular momentum principle for motion of a particle.

A right circular cone with a semi vertical angle α is fixed with its axis vertical and vertex downwards. A particle P of mass m is held at the point A on the smooth inner surface of the cone at a distance ' a ' from the axis. If it is a given velocity ' u ' in the horizontal direction perpendicular to $O A$, where O is the vertex of the cone, through out of the motion the path of the particle is inner surface of the cone. Show that the particle rises above the level of A if $u^{2}>a, g \cot \alpha$ and greatest reaction between the particle and the surface is

$$
m g\left(\sin \alpha+\frac{u^{2}}{a g} \cos \alpha\right)
$$

