EASTERN UNIVERSITY, SRI LANKA

FIRST EXAMINATION IN SCIENCE 1996/97

(June/July' 2004) (FIRST SEMESTER) EXTERNAL DEGREE EXMT 103 - VECTOR ALGEBRA & CLASSICAL MECHANICS I

Answer all questions Time : Three hours

1. (a) Find the equation of the plane through three given points whose position vectors are \underline{a} , $\underline{b} \& \underline{c}$ with respect to some origin O.

Hence or otherwise show that, if the vectors \underline{a} , \underline{b} and \underline{c} are such that \underline{a} is perpendicular to both \underline{b} and \underline{c} , and $|\underline{b}| = |\underline{c}|$, then the equation of the plane through the three points whose position vectors are \underline{a} , \underline{b} and \underline{c} is

$$\left(\frac{\underline{a}}{|\underline{a}|^2} + \frac{\underline{b} + \underline{c}}{|\underline{b}||\underline{c}| + \underline{b} \cdot \underline{c}}\right) \cdot \underline{r} = 1.$$

(b) If the vector \underline{x} is given by the equation $\lambda \underline{x} + \underline{x} \wedge \underline{a} = \underline{b}$, where \underline{a} , \underline{b} are constant vectors and λ is a non-zero scalar, show that

 $\lambda^2(\underline{x} \wedge \underline{a}) + (\underline{a} \cdot \underline{b})\underline{a} - \lambda |\underline{a}|^2 \underline{x} + \lambda(\underline{a} \wedge \underline{b}) = 0.$

Hence obtain \underline{x} in terms of \underline{a} , \underline{b} and λ .

2. (a) Define the following terms.

i. The gradient of a scalar field ϕ ,

ii. The divergence of a vector field \underline{F} ,

iii. The curl of a vector field \underline{F} .

Prove that

$$\operatorname{curl} \left(\phi \, \underline{F}\right) = \phi \, \operatorname{curl} \underline{F} + \operatorname{grad} \phi \wedge \underline{F} \, .$$

(b) Let $\underline{r} = x\underline{i} + y\underline{j} + z\underline{k}$ and $r = |\underline{r}|$. Find $\nabla\left(\frac{1}{r}\right)$. If \underline{a} is a constant vector, find

- $\operatorname{grad}(\underline{a} \cdot \underline{r}),$
- $\operatorname{curl}(\underline{a} \wedge \underline{r}).$

Hence show that

i.
$$\operatorname{grad}\left(\frac{\underline{a} \cdot \underline{r}}{r^3}\right) = \frac{\underline{a}}{r^3} - \frac{3}{r^5} (\underline{a} \cdot \underline{r}) \underline{r},$$

ii. $\operatorname{curl}\left(\frac{\underline{a}\wedge \underline{r}}{r^3}\right) = \frac{2\underline{a}}{r^3} + \frac{3}{r^5} (\underline{a}\wedge \underline{r})\wedge \underline{r}$.

3. (a) State Green's theorem on the plane.

Verify Green's theorem in the plane for

$$\oint_C (xy + y^2)dx + x^2dy$$

where C is the closed curve of the region bounded by y = x and $y = x^2$.

(b) State Stoke's theorem.

Verify the stoke's theorem for a vector $\underline{A} = (2x-y)\underline{i} - yz^2\underline{j} - y^2z\underline{k}$, where S is the upper half surface of the sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary. 4. Prove that/the radial and transverse component of the acceleration of a particle in a plane in terms of polar co-ordinates (r, θ) are

$$rac{d^2r}{dt^2} - r\left(rac{d heta}{dt}
ight)^2 \quad ext{and} \quad rac{1}{r}rac{d}{dt}\left(r^2rac{d heta}{dt}
ight)$$

respectively.

A particle of mass m rests on a smooth horizontal table attached through a fixed point on the table by a light elastic string of modulus mg and unstretched length 'a'. Initially the string is just taut and the particle is projected along the table in a direction perpendicular to the line of the string with velocity $\sqrt{\frac{4ag}{3}}$. Prove that if r is the distance of the particle from the fixed point at time t then

$$\frac{d^2r}{dt^2} = \frac{4ga^3}{3r^3} - \frac{g}{a}(r-a).$$

Prove also that the string will extend until its length is 2a and that the velocity of the particle is then half of its initial velocity.

5. A particle moves in a plane with velocity v and the tangent to the path of the particle makes an angle ψ with a fixed line in the plane. Prove that the component of acceleration of the particle along the tangent and perpendicular to it are $\frac{dv}{dt}$ and $v\frac{d\psi}{dt}$ respectively.

A body attached to a parachute is released from an aeroplane which is moving horizontally with velocity v_0 . The parachute exerts a drag opposing motion which is k times the weight of the body, where k is a constant. Neglecting the air resistance to the motion of the body, prove that if v is the velocity of the body when its path is inclined an angle ψ to the horizontal, then

$$v = \frac{v_0 \sec \psi}{(\sec \psi + \tan \psi)^k}$$

Prove that if k = 1, the body cannot have a vertical component of velocity greater than $\frac{\underline{v}_0}{2}$.

6. Establish the equation

$$\underline{F}(t) = m(t)\frac{d\underline{v}}{dt} + \underline{v}_0\frac{dm(t)}{dt}$$

for the motion of a rocket of varying mass m(t) moving in a straight line with velocity \underline{v} under a force $\underline{F}(t)$, matter being emitted at a constant rate with a velocity \underline{v}_0 relative to the rocket.

A rocket with initial mass M is fired upwards. Matter is ejected with relative velocity u at a constant rate eM. M' being the mass of the rocket without fuel. Show that the rocket can't rise at once unless eu > y.

If it just rises vertically at once, show that it's greatest velocity is

$$u\ln rac{M}{M'} - rac{g}{e}\left(1-rac{M'}{M}
ight)$$

and the greatest height reached is

$$\frac{u^2}{2g}\left\{\ln\left(\frac{M}{M'}\right)\right\}^2 + \frac{u}{e}\left\{1 - \frac{M'}{M} - \ln\left(\frac{M}{M'}\right)\right\}.$$

A body attached to a paraclinite is veleased **y** on an astopia

and another to report the velocity of "The presidence area