EASTERN UNIVERSITY, SRI LANKA

FIRST EXAMINATION IN SCIENCE - 2002/2003

(FIRST SEMESTER)
(JUNE-AUGUST 2004)
EXTERNAL DEGREE

EXPH 102-PHYSICAL OPTICS I

Time: 01 hour.
Answer All questions.

1. (a) Derive an expression for fringe width obtained on a screen when monochromatic light from a narrow slit falls on two parallel slits.
(b) A bearn of light consisting of two wavelengths $6500 A^{0}$ and $5200 A^{0}$ is used to obtain interference fringes in a Young's double slit experiment.
(i) Find the distance of the third bright fringe on the screen from the central maximum for $\lambda=6500 A^{0}$.
(ii) What is the least distance from the central maximum when the bright fringe due to both the wavelengths coincide.
Assume that the distance between the slits is 2 mm and the distance between the planes of slits and the screen is 120 cm .
2. (a) Sketch a diagram for the experimental arrangement for Newton's rings when convex side of a convex lens placed on a glass surface'
(b) Show that the diameter of the dark ring in the newton's ring experiment is given by

$$
d_{m}^{2}=(4 R \lambda) m
$$

where d_{m} is the diameter of the $m^{\text {th }}$ order dark ring and R is the radius of the curvature.

In a Newton's ring experiment the diameter of the $5^{t h}$ dark ring is reduced half of its value on introducing a liquid below the convex surface. Calculate the refractive index of the liquid.
You may assume the following expression for the path difference between two rays

$$
\Delta=2 \mu d \cos \theta-\frac{\lambda}{2}
$$

where the symbols have their usual meanings.

