EASTERN UNIVERSITY, SRI LANKA
DEPARTMENT OF MATHEMATICS
FIRST YEAR FIRST SEMESTER(2002/2003)

EXTERNAL DEGREE

MT 106-TENSOR CALCULAS

Answer all questions Time: One hour

1. (a) Explain what is meant by the following terms;
i. Covariant tensor,
ii. Contravariant tensor.
(b) Write down the law of transformation for the following tensors:
(i) $A_{q r}^{m s}$,
(ii) $B_{l m}^{i j k}$,
(iii) $C_{m n}$.
(c) If $d s^{2}=g_{j k} d x^{j} d x^{k}$ is an invariant, show that $g_{j k}$ is a symmetric covariant tensor of rank two.
(d) A covariant tensor has components $x y, 2 x-z^{2}, x z$ in rectangular coordinates. Find its covariant components in spherical coordinates.
2. (a) Prove, with usual notation, that:
i. $\frac{\partial g_{p q}}{\partial x^{m}}=[p m, q]+[q m, p]$,
ii. $\frac{\partial g^{n k}}{\partial x^{m}}=-g^{i n} \Gamma_{i m}^{k}-g^{i k} \Gamma_{i m}^{n}$,
iii. $\Gamma_{p q}^{p}=\frac{\partial \ln \sqrt{g}}{\partial x^{q}}$.
(b) Explain the terms covariant derivative and absolute derivative as applied to a tensor of type $A_{j k}^{i}$.

Calculate the absolute derivative of the following:
i. $A_{j k}^{l m n}$,
ii. An invariant ϕ,
iii. Metric tensor $g_{i j}$.

