Faculty of Commerce and Management

Final Year Repeat Examination in Business Administration/Commercef

(Specialization in Enterprise Development) - 2008/2009(Feb'2010)
MGT 4144 - Financial Management

Answer All Questions

Time Allowed: 03 Hours

Non Programmable Calculators are permitted. Use tables attached.

1. The comparative financial statements of AMC plc for financial year ending $31^{\text {st }}$ December 2009 are given below:

Balance sheet as at $31^{\text {st }}$ of December 2009

Liabilities	Rs.
Equity and Liabilities	
Share Capital and Reserves	200,000
10% Long term Mortgage Loan	100,000
Short term Loans from bank	50,000
Creditors	50,000
	400,000
Assets	
Land and Buildings, Furniture etc.(net)	200,000
Stocks	120,000
Debtors	50,000
Cash \& Bank	30,000
	400,000

The Income Statement for the year ended $31^{\text {st }}$ of December 2009

	Rs.
Sales	500,000
Cost of sales	300,000
Gross profit	200,000
Operating expenses	110,000
Profit before interest and taxes	90,000
Interest on long-term loan	10,000
Profit before tax	80,000
Taxes	30,000
Profit after tax	50,000

Required:

Comment on the financial performance of the company for the year ending $31^{\text {st }}$ of December 2009 using relevant financial ratios.
02. (a) Find the present value of Rs. 10,000 receivable after 5 years if the rate of discount is 10%
(b) A finance company advertises that it will pay 10% interest annually for a 5 year fixed dep if Rs. 100,000 is deposited now. Find the value of the deposit at the end of $5^{\text {th }}$ year.
(c) A Rs. 1000 par value bond bearing a coupon rate of 12% will mature after 5 years. Wha the value of the bond today, if the discount rate is 15% ?
(25 Mar
03. The following data are extracted from the financial statements of a company:

Sales (100,000 units @ Rs.10)	$10,00,000$
Variable Costs	$5,00,000$
Contribution	$5,00,000$
Fixed Cost	$3,00,000$
Net Profit	$2,00,000$

Required:

(a) Calculate the following:
(i) P / V ratio
(ii) Break Even Point
(iii) Margin of safety
(b) If the price increases by 20 percent, what shall be the new PN ratio and Break Ell Point?
(c) If the price increase by 20 percent is accompanied by a reduction in volume by percent, what shall be the effect on the Break Even Point and Profit?

A firm is considering two mutually exclusive investments, Project A and Project B. The expected cash flows of these projects are as follows:

year	Cash flows (Rs.000)	
	Project A	Project B
0	(1000)	(1000)
1	300	1000
2	400	500
3	900	100

Cost of capital is 10%

Required:

(i) Calculate the NPV for each of the projects.
(ii) What is the IRR of each project?
(iii) Which project would you choose?

Table A－1 Future Value Interast Factors for One Doilar Compounded at k Porcent for n Perlods：$F V / F_{k B}=(1+k)^{n}$

Period	1\％	245	S\％${ }^{\text {\％}}$	Whay	3）${ }^{4}$	$6{ }^{\text {d }}$			0\％	cask		12.	13\％：	16\％	915\％	8\％	20se	20\％	20\％
\％exat	1.0100	1.0200	1.0300	1.0400	1.0800	1.0800	1.0700	1.0800	1.0900	1.1000	1.1100	1.1200	1.12300	1．1400	1.1500	1．1500	1.2000	1.2400	1．2800
\％	1.0201	1，0404	1.0800	1．0315	1．1025	1.1238	1.1449	1，1064	1．1809	1.3100	1.2321	1.2544	1.2769	1．2995	1.3225	1，2458	1.4400	1.5376	1．6625
4	1.0303	1.0642	1.0027	1.1249	1.1876	1，1890	4．2250	1.2559	1.2050	1.3310	1.3678	1．4048	1．4．429	1，4818	1．5209	1．5609	1.7280	1.9068	1．9531
5	$\frac{1.0405}{1.0519}$	1．0324	1．1285	$1.15{ }^{5} 5$	1．2155	1.2825	1.3109	1.3505	1，4118	1，404	1．8131	1.6738	1．8305	1．8580	1.7400	1．8109	20730	2.3042	24414
290	1.0519	1.1041	1．1503	1.2187	1．2763	1.2382	1．4823	1.4303	1.8359	1． 51505	1.8551	1.7823	1．8424	1.5234	2.0144	2.1003	2.4883	2,9318	3.0818
6	1.0815	8.1282	1．1341	1．2853	1．3401	1，4135	1.8007	4．8889	1.4771	1．7743	1.8708	1.8738	2.0920	2.1950	2.3131	2．4304	29858	3.83362	3.8147
\％ 7	9.0721	1.1857	1，22：9	1.3189	1．4071	1．8035	1．8068	1.7138	1．2200	1.84407	20762	2．a107	2．3528	2.5029	2．6500	2.8292	3.5832	4.6077	4，7604
－	1．0829	1.1797	1.2668	1.3888	1．4778	1．6935	1.7182	1.3509	4．8928	2.1485	2．3048	2.4760	2.8594	2.8828	3.0880	3．2786	4．2988	6.6895	6．9805
－ 98	1.0937	1．2081	1.3048	1.4239	1.5613	1.6095	t．83s	1.9980	2.1710	2.3879	2．5350	2.7734	3.0040	3.2519	3.8179	3．8830	$5.150{ }^{\text {c }}$	6．9310	7.4508
－				1.4	1.6239	1．7808	1.9	2.1859	2．3074	2.61937	2.8384	3.1089	3，3846	3.7072	4．0468	4.4114	6.18817	0.5944	8，3432
\％ 11%	1.1157	8.2434	1.3842	9．83995	1.7103	1．8603	2.1049	2.3316	2.5604	2.8634	3．7618	3.4785	3．8339	4.3282	4．303	8.1173	7，4301	10.005	11．942
14	1.1288	1.2832	1．4259	1.6010	1.7959	2.0122	2.3522	2.6162	2.8127	3.1384	3，4885	3．asma	4.3345	4.8176	6，20503	6.8580	8，9161	13.215	14.562
	1．1351	f．2938	14．305	1．6651	1，4836	2.1328	2.4098	2.7188	3.0888	3，4523	3．4as3	4，3835	4.0850	6.4324	6.1828	6．8565	10．699	10．338	18.480
－ 30	$\frac{1,1685}{1.1610}$	1．8469	$\frac{1.5128}{1.5580}$	317	1.9790	2.2600	2.6785	2.8372	3.3647	3．7975	4.3104	4．8877	5． 5349	6.2813	7.0767	7，9078	12．439	20.311	22.737
4－3．0		1.8400						3.1722	3.6425	4.4772	4.7846	［．／4738	6．2343	7.1379	8．1371	0．2．358	15．407	28.108	28.422
15：	1.1725	1，3723	1，5097	8.8730	2.1829	20404	2.9523	3，A259	3.8793	4.0950	8．3109	5，4304	7．0073	8.4972	0.35876	10.748	18.45 a	31.243	35，827
17	1.1843	1，4002	1．0528	5．0470	2.29820	2.8983	3.1688	3.7000	4．3378	6．0845	8．9351	6，3099	7.1035	0.2765	10.781	2，465	22．188	8.741	44．400
18	1，1901	1.4232	1.7024	2.0258	2．4508	28853	3.3798	3，8090	4.7471	6．5609	0.8638	7.8500	2.0243	10.575	12.376	14．403	23.623	48．039	86.811
	$\frac{1.2001}{1.2208}$	1，4tse	1.7838	$2.10{ }^{2}$	2.8870	3.0255	3．6185	4.3187	6.9417	0.1162	7.2833	8．6123	10．107	12.086	14．232	18.7	31．045	59.558	80．389
उतtat						3.2071	3.8697	4.8810	． 6094	6．7275	23	9.6453	11.523	13.743	16，367	19．451	38．238	73.864	86.736
120	1.2324	1.5167	1．8693	2278	2.7830	3.3095	4．1446	8.0338	6.1088	7.4002	6．8492	10.804	13，021	48．668	10.422	22，574	46，005	91.692	103．420
4	1.2447	1，6400	$1.916 \pm$	2.3639	2.02853	2.0038	4．4304	B．4305	0.8608	3．140s	2．8358	12.100	14.714	17．061	21.045	28，186	55.205	113.574	135.525
4	1.2572	1．57	1.9736	2.4887	3.0778	3.8197	4.74005	6.8718	7.2879	8.0543	11.028	13．552	16.827	20，302	24．a\＄1	31.378	86．247	140.831	169.407
\％	1.2697	1.8085	2.0329	2.5538	\＄ 22251	4，0405	8.0724	6． 3412	7.0111	S．8457	12.238	18．179	18．758	23.212	28.625	35.239	72，497	174．631	279.756
d	1.2326		2.0938	2．8588	3．3564	4.2999	S．4274	6.8485	8． 6293	10，838	13.585	17.000	21.251	25．482	32.010	40.874	95．394	216.542	294．809
040	1.3478	1.5114	24273	3.2434	4.3219	3.7438	7.8123	10.063	13．208	17．440	22.092	23．380	39.116	60.950	60．312	25．950	237.376	634．820	207．784
St	1．4188	1.9899	28139	3.8451	6.5180	7.8884	10．677	14．785	20.414	28.102	38.675	52．800	72．059	88.100	183， 178	180.314	350．66B	＊	．
3	1．430	2.0399	2.8093	4.1030	6．7098	0.1478	\＄1．428	15．804	22.231	30.813	42.818	－0． 138.	日t．a3y	111．834	163.158	209.104	708.802	＊	．
$\frac{40}{385}$	${ }_{\text {1．}}^{1.84489}$	$\frac{2.2080}{2.5014}$	$\frac{3.2620}{4.3838}$	4．8030	7，0400	$\frac{10.288}{18.420}$	14.974	21．725	31．408	46.259	65，001	83.051	132.782	188.884	267．884	378.721	－	－	＊
							28.407	46.802	74．353	117.391	144．50\％	235．002	460.738	700.233	，	＊	＊	．	＊

Table A－2 Future Valus interest Factors for a One－Dollar Annuity Compouned at k Percent for n Perioda：FyIFA $k, n=\left[(1+k)^{n}-1\right] / k$

Pariod	4\％	$2{ }^{2}$	3\％	6\％	6\％	3\％	\％ 6 \％	2\％\％	24\％	104	412\％	12\％		6－10，	敒\％	Shedic	20\％	$24 \times$	8
－	1．5000	1.0200	1．9300	1．0000	1．0800	1.0500	1.0709	1.0500	1.0990	1.1009	1.1100	1.1200	1.1300	1.1400	1.1500	1.1600	1.2000	1.2400	1.2600
2	2.0100	2.0209	2.0300	2.0400	2.0890	2.0800	2.0700	2.0800	2.0509	2.1000	21100	2，1200	2.1300	21000	2.1800	2.1800	2.2000	2.2400	2.2560
4	3.0301	3．0699	3，0909	3.1216	3.11826	3.1838	3.2149	32404	3.2751	3，3100	3.3421	3.3744	3，4069	3．4539	3.4725	3.5058	3.6400	3.7776	3.1128
\％	4.0804	4，1218	4.1836.	4.2488	4.3109	4．374s	4．4389	4.5091	4．8739	4．8410	4.7097	4，7793	4．8060	4．2211	4.9934	8．0566	8.3680	5.6842	6．7058
812	5.1010	5.2040	6．3091	5．4483	8．625s	6.8371	8，7607	5．5005	5，9047	0.4081	6.2278	6．3529	0.4803	5． 6101	6.7424	L．8771	7.4816	8.0418	1.2070
1.	6.1820	8.3051	6，4034	5．a330	6.8019	0.8763	7．1839	7.3369	7.8233	7.7186	7.1829	0.1162	1.3227	2．8355	8.7637	8.9778	9．9209	10.980	11.25 ¢
4	7.2138	7．4343	7．8585	7.8993	2．1420	0.3838	8.8540	8． 2223	8．2004	2.4572	2.7433	10.088	16．405	10.730	11.087	11.414	12.916	14．015	15.073
4	8.2057	3.6839	0.8983	0.2142	9.6481	9．897\％	10.280	10.087	11．023	11．438	11．85s	12.300	12.757	13．333	13.727	14.260	16．459	19.123	18.342
¢	2．3685	0.7646	10.489	10.863	11.027	11．481	11.578	12.489	13.021	13.679	14．164	14.776	15.416	18．885	10.788	17．618	20.788	24.712	26.802
浐	10.482	10．950	11．464	12．00\％	12．67a	13．281	13.318	14．487	18.123	15．937	13.722	17．340	13.420	10.337	20，304	21，321	28．059	31.043	33.253
－																			
18	14．587	12.189	12.808	13.485	14．207	14.972	45．784	18．945	17．850	10.531	10．501	20.885	21.814	3.045	24．348	23.733	32.150	20．238	42.689
12	12.633	13.412	14.192	15.029	18.547	16.370	17．388	18.977	20.148	21.384	22.713	24，933	26.850	27，271	21，002	30.850	39.501	60.396	84，208
40	13.3008	14.858	18.548	18，027	17.713	18.882	20．141	29．488	22.053	24．5n3	21.212	26．028	20.985	32．085	3M．352	36.78 Ea	48.497	64.110	68.780
－	14.947	16.974	17，089	18.232	12．658	21.418	22．1550	24．218	28.019	27.975	30.0 嗉	32.383	34.883	37．681	40.885	43.672	58.100	80.498	83．049
	16.087	17.293	18.550	20.024	21．870	23.270	25.129	27．162	29.351	31.772	34.403	37．280	40.417	43.442	47.880	01．830	${ }^{72.035}$	100．815	108．507
3－2																			
2 510	17．243	18．839	20.157	21．a35	23.585	28.573	27．838	30.324	33．003	5.850	190	42763	45，672．	80，930	E5．717	60．028	07．442	126．014	138．169
－	18，430	20.412	21.762	23．698	26.840	28.213	30.840	33.750	38.974	40.648	44.608	488．8． 4	83.739	50，118	85.075	71.575	308． 031	167， 263	173.638
10	19．815	21.412	23.414	25.845	25.1332	33.800	33.899	37．A50	41，301	45.605	30．398	86．730	64.728	88，394	78．035	84．141	128.117	195．985	218.045
240	20.811	22.84	25，117	27.671	30.639	38.780	37，379	41．446	48.019	81．188	66，938	63．440	70.746	78.908	88.212	96．603	188，740	244，033	273.555
迹	22.012	24.297	25．970	29.778	33.088	Ss	988	782	61.160	67， 274	64.203	72．062	80．847	81.025	102.444	115．330	180．688	s03．601	342．348
4	23，238	28.783	28.575	34．015	33.710	38.8098	44．88S	60，423	68．785	64，002	72.298	81．638	92．470	104．768	188．610	134.841	225．020	377，465	420.651
25	20，472	27.200	30.657	34.248	38.508	43.982	48.000	56， 437	62.473	71，403	01.216	92．503	105．401	120．436	137．658	157.415	271.031	459，058	\＄38． 101
4	28.718	23.046	92，458	38．548	41．430	40.810	63，430	60．993	82.032	78．343	91．148	104．003	129.205	1338.2087	109.278	183．801	328.237	502．630	673，828
－81	28，873	30，422	24，426	39.083	44.502	60．810	88.177	$6{ }^{6} .785$	78.780	88，497	102.174	111．158．	138．031	159．859	188，108	813.078	392.454	723.461	645，033
2	28．243．	32.030	36， 160	48.040	47.727	68	63．249	73．105	B4．701	DE． 347	114.493	133．234	155．820	181.871	212.793	269.214	471.981	806．092	．
M	34.788	40．6朗	47.576	86．005	86.430	79．050 ${ }^{\text {a }}$	95．481	113．283	138．903	104．698	102．031	244，333	293.120	36.737	434.705	830，312	－	＊	＊
28.	41.680	49．094	80，482	73.882	20，330	111．435	138.237	172.317	215．711	271.084	341.580	431.803	646．551	69.673	3 31． 170	－	－	＊	＊
W10	43.077	51.888	83，278	77．588	98．838	112.121	148.913	187， 192	236.125	280.127	388.184	485．403	＊18．750	791.673	．	＊	－	＊	－
60．	48，885	80.402	75．401	95．025	129.800	164．762	189.635	259．087	357．802	442.683	E81，．a29	767.091	－	．	．	a	－	．	－
suo．	51.453	84.679	112.787	162.857	209.388	230，335	400.629	573．770	815,096	＊	．	－	－	－	．				－

Table A－3 Present Valus Interest Factors for One Dollar Discounted at k Percent for n Periods：PViF $k, n=1 /(1+k)^{n}$

Periout，	$14{ }^{2}$	23\％	W\％	4%	8580	S． H_{4}	5\％ex	34．						14.4		45% ．	20\％	32\％	4
	0.9909	0.8808	0.9708	0.9815	0.9524	0.9434	0．9268	0.9259	0.9174	0,0091	0.9009	0.8329	Q．teso	0.9772	0.8005	0.8581	0.10333	0.8065	a
－${ }^{2}$	0.9593	0.9812	0.8928	0．52258	0.9970	0.3900	0.8734	0.8673	0.18417	0.8234	0.1718	0.7072	0.7831	0.7005	0.7505	0.7432	0.6948	0.0504	W
3	0．970\％	0.9423	0.9159	0.8380	0．8638	0.8398	0.8163	0.7838	0.7722	0.7818	0.7312	0.7118	0.8839	0.6750	0．6575	0.4407	0，8797	0.5240	enil
＋ 4	0.8810	0.9238	0．8885	0.8648	0.8227	0.7921	0.7629	0.7358	0.7004	0．6a3s	0.6867	0.8358	0.6135	0.5024	0.679	0.5623	0．4223	0.4230	0.2
－ 5	0.8518	0.8087	0．8026	0.0210	0.7835	0.7473	0.7130	0.6808	0.6459	0.0209	0.5055	0.5674	0.8420	0.5184	0.4072	0．4769	0．401过	0.3414.	05
－ a 3	0.5420	0.3880	Q． 3378	0.7903	0.7462	0.7080	0．56e3	0.8302	0.5083	0.5845	0.5348	0.0008	0.4403	0.4068	0.4383	0．4108	0．3349	0.2759	2010
	0，9337	0.8708	0.8131	0.7898	0.7107	0.8581	0.5227	0.8135	0.0470	0.5132	0.4817	0．45动	0.4251	0.3980	0.3769	0.3538	0.2781	0.2218	Q 0
\％．	0．9235	0.21335	0.7834	0.7307	0．6788	0.4274	0.5820	0.8503	0.5019	0．45085	0.4339	0.4039	0.3789	0.3600	0.3205	0.3050	0.2328	0.1789	0.15
${ }^{2}$ ，	0.9148	0.0388	0.7664	0.7828	0.6448	0.85918	0.8439	0.5002	0.4104	0.4251	0.3909	0.3605	0.3328	0.3078	0.2843	0.2630	0.1938	0.1443	0.11
10	0.9053	0.0203	0.7444	0.3768	0.6139	O．g5es	0.6993	0.4632	0，4224	0.3885	0.3622	0.3220	0．2909	0.2889	0.2472	0.2337	0.1695	0.1104	Q15
14	0.8903	0.8048	0.7234	0.6493	0.8047	0.5288	0.4781	0．423\％	0，3075	0.38308	0.3173	0.2878	0.2607	0.2380	0.2109	0.1954	0，1348	0.0838	1．M．
42	0．8374	0.7888	0.7014	0.8248	0.85889	0.4970	0.4440	0．3071	0.3588	0.3186	0.3858	0．2307	0.2367	0.2076	$0.418{ }^{\text {a }}$	0.1886	0，1122	0．9787	195
36	0.8797	0.7730	0.6810	0.6005	0.5303	0．4Aes	0.4160	0.3577	0.3293	0.2097	0.2576	0.2982	0.2949	0.1829	0.7829	0.4452	0.0836	0.0510	005
14.	0.8700	0.7679	0.8841	0.8776	0.8054	0．4428	0.35878	0.3400	0.2982	0.2853	0.2320	0.2004	0.1807	0.1597	0.1013	0.1233	0.0779	0.0402	20N
1e．	0.8513	0.7430	0.8518	0．5653	6．4810	0.4173	0，3626	0.3152	0.2748	0.2394	0．2050	0.1827	0.1500	0，1401	0.1239	0.1079	0.0549	0．0397	018
（4）48	0．8523	0.7234	0.5238	0.8338	0.4881	0.3996	0.3337	0.2912	591	0.2175	0.1803	0.1831	0.14815	0.1229	0.1089	0.0930	0.0841	0.0320	O．N14
\％ 17	0.8444	0.7942	0.8050	0.3138	0.4303	0.3714	0.3105	0.2703	0． 3391	0.1976	0，4098	0.1468	0.1252	0．1078	Q．0123	． 1082	0.0081	0．0283	M11
\％	0，8380	0.7002	0.6874	0.4935	0.4188	0.35893	0.285	0.2502	0.8129	0.4788	0.1529	0.1500	0.1185	0.0840	0.08508	0.0654	0.0376	0.0205	ONiI
，	0.8377	0.8894	0.5703	0.4745	0.3957	0，2305	0．2768	0.2317	0.1945	0.1138	0.1577	1181	0.0831	0.0429	0.0705	0.0809	0.0313	0.0188	av
29.	0．8195	0.0730	0．6637	0．A5BA	0.3768	0.3110	0.2504	0.2148	0.1784	0.148	0.1240	0.1037	0.8884	0.0728	0.0811	0.0814	0.0261	0.0135	0.812
2\％，	0．3114	0，6598	0.5375	0.5388	0.35 就	0.2043	0.2415	8.1807	0，3037	0.9389	0.1417	0．0923	0.9738	0.0638	0．0033	． 0443	． 0247	0.0100	W
32	0.8034	c．0458	0.8251	0，4220	0.5518	0.2776	0.2357	0.1830	0.1802	0.122 a	0.6807	c．0335	0.0580	0.0850	0.0688	0.0392	0.0151	0，0035	am
23	0.7984	0.3342	0．8067	0，4057	0.3258	0.2818	0.2109	0.1703	0.1378	0.1117	0.0907	0.0738	0.0601	0.0491	0.0402	0.0323	0.0151	0.0071	a．w
24	0，7a78	0.6217	0.4519	0.3904	0.3109	0.2470	0.1971	0.1877	0.1236	0.1015	0.0817	0．085	0.0833	0.0431	0.0349	0.0294	0.0128	0.0087	Q M
慈3	0．7798	0．5015	0，4776	0.3781	0.8383	0.2350	0.1842	0.1400	0.1100	0.0923	0．0735	0.059	0.8471	0.037 a	0．0398	0.0248	0.0105	0.0045	0 0，
\bigcirc																			
30.	0.7619	0.8589	0.6120	0.3083	0.2314	0.1749	0.1314	0.0098	0.0784	0.0873	0.0487	0.0334	0.0258	0.0198	0.9181	0.0116	0.0042	0.0016	a．cx）
81	0.7059	0.8000	0.3854	0.2534	0.1813	0.1301	0.0937	0．0975	0.0490	0.0355	0．0259	0.0180	$0.013{ }^{\text {a }}$	0.0102	0.0075	0.0055	0.0017	0.0008	\cdots
4 88	0.6989	0.5802	0.3450	0.2487	0.1727	0．1287	8.0978	0.0828	0.0449	0，0323	0.0234	2.0188	0.0129	0，0089	0.0005	0.0098	0.0014	\cdots	\％
40，	0.5747	0，4829	0.3088	0.2083	0.1429	0．0972	0.0698	0.0480	0.0318	0.0221	0.5184	0.0107	0．0976	0.0053	0.0037	0.0035	0.0007	＊	
－Bay	0.8080	0.3718	0.2231	0.1407	0.0872	0.0543	0.0398	0.0213	0.0434	0．0nas	0.0004	0.0035	0.0092	0.0014	0.0005	0.0000			

Aeflod		3 ${ }^{2}$	83\％	4\％	攷象：	－	7\％	部			143）		4．735：	14\％	－ 20.2	US5	20\％	26）	
4	0.8801	0.9804	0.3709	0.8618	0.9824	0．9434	0.9346	0，0258	0.0174	Q．8001	0.9009	0.8929	0．8850	0.3772	0．40398	0，\％${ }^{\text {a }}$ 21	0.8333	0.0068	amm
4	1.9708	1．8418	1，9135	1．8031	1．5535	1.8334	1.8000	1.7833	1.7801	1．7356	1.7123	1.0591	1．4655	7．361尔7	1．32927	1.6052	4．5278	14560	1．4．4
	2.9410	2.8838	$2 \mathrm{2a35}$	2.7751	2.7232	2.6730	2．8243	2.5771	2.5313	24380	2 A 437	2.4048	2.3812	2.3218	2.2038	2.2459	2.1085	1．2813	1.80
\％	3.9020	3.8077	3.7171	3.6209	3.5450	3．4051	3.3872	3，3121	3，2337	3.1600	3.1026	3.0373	2.0746	2.9137	2.806	2.7982	2.5837	2.404	231
4ctid	4.8634	4.7125	4.5797	4.4518	4．3295	4.2124	4，1002	3.9827	3．83097	3，7808	3．693解	3.6040	3.5172	38331	3，3622	3.2743	2．950	2.7454	288
${ }^{2}$	8.745	8.8014	6.417	3.2431	5.0767	4.8179	．7606	4.62210	5159	4，3583	4.2306	114	3．5076	3.8858	3，7645	3.55847	3．3265	3．020	2.
2\％	8.7202	6．4720	6.2393	8．0021	B．73es	8．8024	B．3893	6.2004	．03850	4．8884	4.7122	4.8538	4．433a	4．3683	4．1804	4．038s	3.6045	3，2425	3．16I
2．${ }^{4}$	7.6817	7．3245	7.0157	6.7337	8．5832	0．2098	B．97t3	8.7480	6．5340	6．354	8.1461	4.9876	4.7308	$4.53{ }^{\text {a }}$	4.4875	4.3438	3.8372	421	2．11
9	8.6880	0.1823	7．7051	7．4353	7.1078	6．3097	0.6162	6．2469	5．9562	5.7850	5．8370	8.3282	5，4317	4.9484	4.7710	4．5085	4.0310	3.5085	
13	2.4713	8.	0． 6	3，1109	7.7217	7.	7.0236	8.71	6.4177	B．1	5．8092	5．6502	5．4\％22	6．2961	6．0100．	4，0332	4.1825	3.5919	397
2， 11	10.388	0.7	9．2526	8.78005	8.3034	7．85S9	7.4897	7．1300	062	4851	0.2085	8．8377	Sa68	5．9627	8， 3393	6.0258	4.3275	3.7787	
3	11．285	10．675	8．0140	2.3351	2．8833	8．3asa	7.9437	7．5399	8.1007	0.8137	6.4824	6．ts 4	5．9476	8．8803	8.4204	6.51971	4．4392	3514	
43．	12.134	11．34	10．635	2.9800	9．383\％	3．8587	0.3577	7.8038	74889	7.1030	6.74918	0.4235	6.1298	5．3424	$6.58{ }^{\text {E }} 31$	8．3423	4.5327	3.912	
818	13．004	12109	＋1．293	10.003	4.	0.20950	488	8.24	7.7802	7.3807	6． 3810	6． 2238	6．302\％	6.9021	6.7285	8．A678	4．610］	3．5618	
319	13.	12	11．838	11．118	10．380	9.7122	8.1079	6．8598	e97	7.8001	7．1909	B． r_{10}		6．1423	5．8974	5765	4785	0913	
－																			
18	14.798	13.578	12．981	11．862	10．858	10.108	2．4485	6．8514	8．3128	7．3237	7．3702	8．8749	B．8032	0.2861	9542	3．6888	47206	0333	
	15.432	14.202	13．160	12．185	11.274	10．477	8.7638	8.1216	8.8438	8.0216	7.8448	7.1188	6.7209	B．3729	6.0472	5.7437	4.7746	4.0851	1.4
－ 1 IT．	16．398	14.982	13.764	12.689	19，690	10.838	10.059	0.3719	2．705s	3.2014	7.7088	7.2487	6．8309	24874	6.1230	8.8178	4.1122	4．0780	
1936．	17.228	p8．67a	14.324	13.134	12.086	11．158	10.338	2．e038	． 9881	8.38	7．a303	7．3658	3380	8509	98	3775	． 8435	4.0087	
\％ 24.	18.0	10	14．377	13.	12．462		10.50	0.8131	9．12遃	3.843		7．4096	7.0248	52ar	6．2505	5．9238	4.8695	4.1103	3.3
46］																			
21.	18.857	17，014	18．416	14.023	12.831	11.70	0.836	10.01	2.292	2．4437	8．0781	7.6520	1018	8870	6．312\％	6．9731	8618	1212	14
2203	12.889	87，458	15．937	14．451	13，163	12.042	11．001	18.201	9，4925	0.7718	8.1787	7．6448	7．1295	8.7429	6．3897	6.0113	4.9094	4.1300	3．150
等	20.486	18.202	18．44	14．887	13.450	12．308	11.272	10.37	0．3802	0.85382	8.2854	7.7184	7.2207	6．7921	6，3085	6.4442	． 9245	4.1377	
318	21.283	18.914	18．835	18．247	13．780	12．050	11．489	10．629	9，7006	8．ce47	8.3881	7．7043	7.2329	6．8．351	CAS39	6.0738	4.9371	4.1428	2.9
2ricy	22.023	18.523	17．413	15	14.094	12.783	11．064	10.575	225	2.0	8.4817	7．8451	7.3300	8.8729	Q．A	8．0971	4．8476	4.142	3 344
30	25.008	22.398	19，000	17，292	15.372	13.768	12409	11．289	10.274	B． 2850	8．6s898	8，0．0382	7．9907	7.0027	6.5500	6.1772	4．0708	4.18001	20
\％at	29，405	24.595	27.407	18．065	18.374	14．405	12．549	11．655	10.867	1．5442	6．4838	0.4785	7．585	7.0700	a．stee	0.2158	4.8915	4.1644	2 ${ }^{\text {W }}$
\％${ }^{\text {che }}$	30.108	23.489	21.932	18．803	18.647	14．821	13.035	． 11.747	10.912	0．8785	3．973	0，1224	7．8979	7.9790	6，3231	6.2201	4．83820	4，1640	L．M
4.40	32.835	27， 355	23.115	12.703	17．150	18.046	13，832	11．328	88．787	8.7781	0.9611	0．2438	7．9398	7.1050	6.0440	6，2335	4.9990	4.6659	2， M_{1}
30	38.198	31.424	28.730	21.482	18.255	15.782	13.691	12.233	10.802	$0.8+48$	2， 0 ， 17	A．39A8	7.0762	7.1327	0.8805	8，2483	4.989	4.16	

