## 04 Eastern University, Sri Lanka Sri Lanks. Faculty of Commerce and Management " University, Special Repeat Examination in BBA/ COM- (2003/2004) February/ March (2010) **DAF 3134 Business Statistics**

## Answer all questions

Time: 03 Hours.

11 141

- 01 What are the conditions that must be satisfied by the probabilities in a discrete (i) a. probability distribution?
  - The number of defective parts produced per day by an automated machine (ii) follows a Poisson probability distribution with a mean of 4.
    - What is the probability that on a given day at least two defective a. parts are produced?
    - b. What is the probability that on 2 consecutive days exactly 4 defective parts are produced?
    - What is the mean and standard deviation of the number of defective c. parts produced by the machine per day?
  - b What is meant by the standard normal distribution? (i)
    - (ii) The daily sales in a hardware store have a normal distribution with a mean of Rs. 2000 and a standard deviation of Rs. 165. Determine the probability that:
      - Sales are between Rs. 1800 and Rs 2600 a.
      - b. sales are less than Rs.1500
      - Sales exceeds Rs. 2500 c.

## (20 marks)

- 02. a. (i) State the central limit theorem
  - An auditor for a large credit card company knows that on average the monthly (i) balance of any given customer is Rs. 11200 and the standard deviation is Rs. 5600. Fifty accounts are randomly audited and the sample mean of monthly balance,  $\bar{X}$  is calculated.
    - What is the name of the sampling distribution of  $\bar{x}$ ? a.
    - What are the mean and standard error of the sampling distribution of  $\bar{x}$ ? b.
    - Find the probability that the sample mean of monthly balance is below c. Rs. 10000.

- b. (i) Explain the difference between a part estimate and an interval estimate.
  - (ii) Several companies have been developing electronic guidance systems for cars. A and B are two firms in the forefront of such research. Out of 120 trial of A' s model 101 were successful and out of 200 trials of B's model 110 were successful.
    - a. compute the unbiased point estimate of the difference in two population proportions of developing successful electronic guidance system.
    - b. Construct 95% confidence interval for the difference in two population proportions of developing successful electronic guidance system.

(20 marks)

- 03. a. Explain the following terms
  - (i) Null hypothesis
  - (ii) Alternative hypothesis
  - (iii) Significant level
  - b. A firm producing light bulbs wants to test if it can claim that the light bulbs it produces last 1000 burning hours. The firm takes a random sample of 100 of its light bulbs and finds that the sample mean is 1980 hours and the sample standard deviation is 80 hours. Test the claim at the 5% level of significance.

(20 marks)

04. The following data relate to training and performance of salesmen employed in a company.

| Salesman                             | 1  | 2  | 3  | 4  | 5  |
|--------------------------------------|----|----|----|----|----|
| hours of training                    | 20 | 05 | 10 | 13 | 12 |
| Performance (Average weekly sales in | 44 | 22 | 25 | 32 | 27 |
| 1000 Rs)                             |    |    |    |    |    |

- (i) Identify the independent variable and the dependent variable
- (ii) Compute the least squares regression line
- Estimate the weekly sales that are likely to be attained by a salesman who is given 16 hours of training
- (iv) Compute the correlation coefficient and coefficient of determination
- (v) Interpret the results in the context of the data calculated in part (iv)

05. a. The revenues (in Rs. millions) of a chain of Ice cream stores are listed for each quarter during the previous 5 years.

| Quarter | 2005 | 2006 | 2007 | 2008 | 2009 |
|---------|------|------|------|------|------|
| 1       | 68   | 65   | 68   | 70   | 60   |
| 2       | 62   | 58   | 63   | 59   | 55   |
| 3       | 61   | 56   | 63   | 56   | 31   |
| 4       | 63   | 61   | 67   | 62   | 58   |

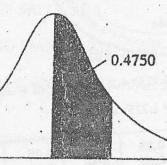
(i) Calculate the four- quarter centered moving average

(ii) Using the moving averages computed in part (i) calculate the seasonal indexes

(iii) Interpret the seasonal indexes

b. The following trend line and seasonal indexes were computed from 10 years of quarterly observations. Forecast the next year's time series.

| $\hat{y} = 150 + 3t$ | t = 1, 2, | 40  |     |     |
|----------------------|-----------|-----|-----|-----|
| Quarter              | 1         | 2   | 3   | 4   |
| Seasonal             | 0.7       | 1.2 | 1.5 | 0.6 |
| index                |           |     |     |     |


(20 marks)

Areas under the standardized normal distribution

## Example

 $\Pr(0 \le Z \le 1.96) = 0.4750$ 

 $\Pr(Z \ge 1.96) = 0.5 - 0.4750 = 0.025$ 



|     |       |       |       |        |        | 12 13 | 0 1   | 1.96  |                    |       |     |
|-----|-------|-------|-------|--------|--------|-------|-------|-------|--------------------|-------|-----|
| 2   | ,00   | .01   | .02   | .03    | .04    | .05   | .06   | .07   | .08                | .09   |     |
| ).0 | .0000 | .0040 | .0080 | .0120  | .0160  | .0199 | .0239 | .0279 | .0319              | .0359 |     |
| ).1 | .0398 | .0438 | .0478 | .0517  | .0557  | .0596 | .0636 | .0675 | .0714              | .0753 |     |
| ).2 | .0793 | .0832 | .0871 | .0910  | .0948  | .0987 | .1026 | .1064 | .1103              | .1141 |     |
| 0.3 | .1179 | .1217 | .1255 | .1293  | .1331  | .1368 | .1406 | .1443 | .1480              | .1517 |     |
| 0.4 | .1554 | .1591 | .1628 | .1664  | .1700  | .1736 | .1772 | :1808 | .1844              | .1879 |     |
| 0.5 | .1915 |       | .1985 | .2019  | .2054  | .2088 | .2123 | .2157 | .2190              | .2224 |     |
| 0.6 | .2257 | .2291 | .2324 | .2357  | .2389  | .2422 | .2454 | .2486 | .2517              | .2549 |     |
| 0.7 | .2580 | .2611 | .2642 | .2673  | .2704  | .2734 | .2764 | .2794 | .2823              | .2852 |     |
| ).8 | .2881 | .2910 | .2939 | .2967  | .2995  | .3023 |       | .3078 | .3106              | .3133 | 4   |
| ).9 | .3159 | .3186 | .3212 | .3238  | .3264  | .3289 | .3315 | .3340 | · .3365            | .3389 |     |
| 1.0 | .3413 | .3438 | .3461 | .3485  | .3508  | .3531 | .3554 | .3577 | .3599              | .3621 |     |
| .1  | .3643 |       | .3686 | .3708  | .3729  | .3749 | .3770 | .3790 | .3810              | .3830 |     |
| .2  | .3849 | .3869 | .3888 | .3907  | :3925  | .3944 | .3962 | .3980 | .3997              | .4015 | ÷   |
| .3  | .4032 | .4049 | .4066 | .4082  | .4099  | .4115 | .4131 | .4147 | .4162              | .4177 |     |
| 4   | .4192 | .4207 | .4222 | .4236  | .4251  | .4265 | .4279 | .4292 | .4306              | .4319 | 11. |
| .5  | .4332 | .4345 | .4357 | .4370  | .4382  | .4394 | .4406 | .4418 | .442.9             | .4441 |     |
| .6  | .4452 | .4463 | .4474 | .4484  | .4495  | .4505 | .4515 | .4525 | .4535              | .4545 |     |
| .7  | .4454 | .4564 | .4573 | .4582  | .4591  | .4599 | .4608 | .4616 | .4625              | .4633 |     |
| .8  | .4641 | .4649 | .4656 | .4664  | .4671  | .4678 | .4686 | .4693 | .4699              | .4706 |     |
| .9  | .4713 | .4719 | .4726 | .4732  | .4738  | .4744 | .4750 | .4756 | .4761              | .4767 |     |
| .0  | .4772 | .4778 | .4783 | .4788  | .4793  | .4798 | .4803 | .4808 | <sup>h</sup> .4812 | .4817 | 4   |
| .1  | .4821 | .4826 | .4830 | .4834  | .4838  | .4842 | .4846 | .4850 | .4854              | .4857 | 0   |
| n2  | .4861 | .4864 | .4868 | .4871  | .4875  | .4878 | .4881 | .4884 | .4887              | .4890 |     |
|     | .4893 | .4896 | .4898 | .4901  | .4904  | .4906 | .4909 | .4911 | .4913              | .4916 |     |
| .4  | .4918 | .4920 | .4922 | .4925. | .4927  | .4929 | .4931 | .4932 | .4934              | .4936 | X   |
| .5  | .4938 | .4940 | .4941 | .4943  | .4945  | .4946 | .4948 | .4949 | .4951              | .4952 |     |
| .6  | .4953 | .4955 | .4956 | .4957  | .4959  | .4960 | .4961 | .4962 | .4963              | .4964 |     |
| -1  | .4965 | .4966 | .4967 | .4968  | .4969  | .4970 | .4971 | .4972 | .4973              | .4974 | •   |
| .8  | .4974 | .4975 | .4976 | .4977  | .4977. | .4978 | .4979 | .4979 | .4980              | .4981 | 2   |
| .9  | .4981 | .4982 | .4982 | .4983  | .4984  | .4984 | .4985 | .4985 | .4986              | .4986 |     |
| .0  | .4987 | .4987 | .4987 | .4988  | .4988  | .4989 | .4989 | .4989 | .4990              | .4990 |     |

This table gives the area in the right-hand tail of the distribution (i.e.,  $Z \ge 0$ ). But since the normal disbution is symmetrical about Z = 0, the area in the left-hand tail is the same as the area in the corresponding in-hand tail. For example,  $P(-1.96 \le Z \le 0) = 0.4750$ . Therefore,  $P(-1.96 \le Z \le 1.96) = 2(0.4750) = 0.95$ .

Percentage points of the t distribution

Example

| Pr(t > 2.086) = 0.025     |               |  |
|---------------------------|---------------|--|
|                           |               |  |
| $\Pr(t > 1.725) = 0.05$   | for $df = 20$ |  |
| $\Pr( t  > 1.725) = 0.10$ | E2018:4-9     |  |

0:05 0 1.725

28.1 Geldar.

ń.

| $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | 1.15.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 - 1                                | 1                                      | and the second second                 | The second se |                           |                      |                              |                                         | · · · · · · · · · · · · · · · · · · ·                            |                            |
|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------|---------------------------|----------------------|------------------------------|-----------------------------------------|------------------------------------------------------------------|----------------------------|
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$   | . <u>d</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E C                                  | .50                                    | 0.20                                  | 0.10                                                                                                            | 0.05                      |                      |                              | 10.                                     | 0.001                                                            | ,<br>,<br>,<br>,           |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - | 2 0.<br>3 0.<br>4 0.<br>5 0.<br>6 0. | .816<br>765<br>741 1<br>727 1<br>718 1 | 1.886<br>.638<br>.533<br>.476<br>.440 | 2.920<br>2.353<br>2.132<br>2.015<br>1.943                                                                       | 4.3<br>3.1<br>2.7<br>2.57 | 03<br>82<br>76<br>71 | 6.96<br>4,54<br>3.74<br>3.36 | 21 63<br>55 9<br>11 5.<br>17 4.<br>5 4. | .657 318.31   .925 .22.327   .841 10.214   604 7.173   032 5.893 |                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8 0.7<br>9 0.7                       | 06 1.<br>03 1.                         | 397<br>383                            | 1.860                                                                                                           | 2.30                      | 6                    | 2.998                        | 3 3.4<br>3 3.3                          | 199 4.785<br>155 4.501                                           | la seria se<br>La norta di |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 11<br>12<br>13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.69                                 | 97 1.3   95 1.3   94 1.3               | 63 1<br>56 1                          | .796                                                                                                            | 2.228<br>2.201<br>2.179   | 3                    | 2.764 2.718                  | 3.1                                     | 69 4.144<br>06 4.025                                             |                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | 15<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.69                                 | 2   1.3<br>1   1.3<br>0   1.3          | 45   1.<br>41   1.                    | .761<br>753                                                                                                     | 2.145<br>2.131            | :                    | 2.624<br>2.602               | 3.01                                    | 2 3.852<br>7 3.787                                               |                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | 18<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.688                                | 1.33<br>1.33<br>1.32                   | 3 1.<br>0 1.                          | 740<br>734                                                                                                      | 2.110<br>2.101            | 2                    | .567                         | 2.92<br>2.898<br>2.878                  | 1 3.686<br>3 3.646<br>3 3.610                                    |                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | 21<br>22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.686                                | 1.32                                   | 1.7                                   | 21.                                                                                                             | 2.086                     | 2.                   | 528<br>518                   | 2.845                                   | 3.579<br>3.552                                                   |                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | .24<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.685<br>0.684                       | 1.318                                  | 1.7                                   | 14                                                                                                              | 2.069<br>2.064            | 2.                   | 500                          | 2.807                                   | 3.505<br>3.485                                                   |                            |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$  | 27 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.684                                | 1.315<br>1.314<br>1.313                | 1.70                                  | 6                                                                                                               | 2.056                     | 2.4<br>2.4           | 79<br>73                     | 2.779                                   | 3.450<br>3.435                                                   |                            |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | . 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.683                                | , 1.311<br>1.310                       | 1.699                                 |                                                                                                                 | .045                      | 2.40                 | 52                           | 2.763<br>2.756                          | 3.408<br>3.396                                                   |                            |
| 1.282 1.645 1.960 2.326 2.576 3.160                    | 60<br>120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.679                                | 1.296                                  | 1.671                                 | 2.<br>2.<br>1.                                                                                                  | .021<br>000<br>980        | 2.42<br>2.39<br>2.35 | 3<br>0<br>8                  | 2.704                                   | 3.307<br>3.232                                                   |                            |

Note: The smaller probability shown at the head of each column is the area in one tail; the larger probability is

Source: From E. S. Pearson and H. O. Hartley, eds., Biometrika Tables for Statisticians, vol. 1, 3d ed., table 12, Cambridge University Press, New York, 1966. Reproduced by permission of the editors and trustees of Biometrika.