

11 DEC 200

Sri 1

EASTERN UNIVERSITY, SRILANKA EXTERNAL DEGREE EXAMINATION IN SCIENCE SECOND YEAR FIRST SEMESTER - 2003/2004 2004/2005 (July/ August, 2008) EXTCS 202 – OPERATING SYSTEMS (Proper and Repeat)

Answer all questions

Time allowed: 2 Hours

Q1)

n

t

n

- a. What are the advantages of a spooling system over a batch processing system?
- b. What is a process control block (PCB)? Explain the usage of a PCB during the process scheduling?
- c. Draw and briefly explain the process state diagram.
- d. What is a race condition? How they can be prevented?
- e. Describe the operations P(s) and V(s) on a semaphore 's'?
- f. Explain how the semaphores can be used to solve the "Critical section" problem?
- Q2)

e.

he

- a. Explain the 'preemptive' and 'non preemptive' scheduling policy stating suitable examples?
- b. Discuss the advantages and disadvantages of each of the following scheduling methodologies:
 - First come first served (FCFS);
 - Round robin (RR);
 - Priority scheduling (PS).
- c. Given the following information:

Process	Burst time	Arrival time	Priority
A	8	0	3
В	3	2	2
С	7	3	4
D	4	5	3
E	5	7	2
F	8	8	1

- i. Draw the Gantt chart for each of the following scheduling algorithms and calculate the average waiting time and average turnaround time for each algorithm.
 - Round robin (using a time quantum of 4);
 - Preemptive Priority scheduling.
- ii. Which is the most efficient algorithm for the particular problem? Justify your answer.

Q3)

- a. Explain, compare and contrast the following partitioning schemes:
 - Fixed partition;
 - Dynamic partition.
- b. Explain the following memory allocation methods
 - First-fit allocation;
 - Best-fit allocation.
- c. The following tables focus the job details and the list of memory blocks of a system

Job	list:	
000	LIOL.	

Job no	Memory requested (Kb)	
J1	20	
J2	20	
J3	10	
J4	30	

Memory List:				
Memory Location	Block Size (Kb)			
100	30			
200	15			
300	50			
400	20			

- i. You are requested to allocate the jobs in the memory and to find th fragmentation using the above two allocation methods.
- Which is the most efficient allocation policy for the particular probler given above? Justify your answer.

Q4)

1

- a. What do you mean by a "Deadlock"?
- b. Briefly describe the necessary conditions for a dead lock to occur.
 - c. How can you prevent the system from a dead lock?
 - d. Consider the following system:
 - Process A holds R and wants S.
 - Process B holds nothing but wants T.
 - · Process C holds nothing but wants S.
 - Process D holds U and wants S and T.
 - · Process E holds T and wants V.
 - · Process F holds W and wants S.
 - · Process G holds V and wants U.
 - i). Draw the resource allocation graph for the above system.
 - ii). Examine the system for deadlock situation and if the system is deadlocker list processes involved in deadlock.