EASTERN UNIVERSITY, SRI LANKA

1 1 DEC 2008

DEPARTMENT OF MATHEMATICS

EXTERNAL DEGREE EXAMINATION IN SCIENCE

COND YEAR FIRST SEMESTER -(2003/2004)&(2004/2005)

(JULY/AUGUST' 2008)

EXTMT 201 - VECTOR SPACES AND MATRICES PROPER AND REPEAT

swer all questions

Time: Three hours

- 1. (a) Define what is meant by
 - (i) a vector space;
 - (ii) a subspace of a vector space.

Let $V = \{P(x) = a_0x^2 + a_1x + a_2 : a_0, a_1, a_2, x \in \mathbb{R}\}$ be a set of all polynomials of degree ≤ 2 . Prove that V is a vector space over \mathbb{R} with the following operations:

$$(P+Q)(x) = P(x) + Q(x);$$

 $(\alpha P)(x) = \alpha P(x)$, for all $P(x), Q(x) \in V$ and for all $\alpha, x \in \mathbb{R}$.

Is it true that the set of all polynomials of degree 2 forms a vector space? Justify your answer.

- (b) Let W_1 and W_2 be two subspaces of a vector space V over a field F and let A_1 and A_2 be non-empty subsets of V. Prove with the usual notations that
 - (i) $W_1 + W_2 = \langle W_1 \cup W_2 \rangle$;
 - (ii) if $\langle A_1 \rangle = W_1$ and $\langle A_2 \rangle = W_2$ then $\langle A_1 \cup A_2 \rangle = W_1 + W_2$.

Q2. (a) Define the following:

- i. A linearly independent set of vectors;
- ii. A basis for a vector space;
- iii. Direct sum of two subspaces of a vector space.
- (b) Let W_1, W_2 be two subspaces of a vector space V over the field F. Prove that V is the direct sum of W_1 and W_2 if and only if each vector $u \in V$ has unique representation $u = w_1 + w_2$, for some $w_1 \in W_1$ and $w_2 \in W_2$. Let W_1 and W_2 be two subspaces of \mathbb{R}^3 defined by $W_1 = \{(a, b, c) : a = b = c, a, b, c \in \mathbb{R}\}$ and $W_2 = \{(0, x, y) : x, y \in \mathbb{R}\}$. Show that $\mathbb{R}^3 = W_1 \oplus W_2$.
- (c) i. Show that $S = \{1, x, x^2\}$ is a basis of the set of all polynomials of degree ≤ 2 .
 - ii. State Stibnitz replacement theorem for a vector space. Use this theorem to prove, for n-dimensional vector space V if $\langle \{v_1, v_2, \cdots, v_n\} \rangle = V$, then $\{v_1, v_2, \cdots, v_n\}$ is a basis for V.

Q3. (a) Define

- (i) Range space R(T);
- (ii) Null space N(T) of a linear transformation T from a vector space V into another vector space W.

Find R(T), N(T) of the linear transformation $T:V\to\mathbb{R}^2$, defined by

 $T(a+bx+cx^2)=(a-b,b-c)$, where $V=\{a_0x^2+a_1x+a_2:a_0,a_1,a_2,x\in\mathbb{R}\}$ Verify the equation dim $V=\dim(R(T))+\dim(N(T))$ for this linear transformation.

(b) Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation defined by $T(x,y,z) = (x+2y, x+y+z, z), \text{ and let } B_1 = \{(1,0,0), (0,1,0), (0,0,1)\}$

- (i) The matrix representation of T with respect to the basis B_1 ;
- (ii) The matrix representation of T with respect to the basis B_2 by using the transition matrix.
- (a) Define the following terms:
 - (i) Rank of a matrix;
 - (ii) Echelon form of a matrix;
 - (iii) Row reduced echelon form of a matrix.
 - (b) Let A be an $m \times n$ matrix. Prove that
 - (i) row rank of A is equal to column rank of A;
 - (ii) if B is an $m \times n$ matrix obtained by performing an elementary row operation on A, then r(A) = r(B).
 - (c) Find the rank of the matrix

$$\left(\begin{array}{cccccc}
1 & 2 & -3 & -2 & -3 \\
1 & 3 & -2 & 0 & -4 \\
3 & 8 & -7 & -2 & -11 \\
2 & 1 & -9 & -10 & -3
\end{array}\right).$$

(d) Find the row reduced echelon form of the matrix

$$\left(\begin{array}{ccccc}
5 & 6 & 8 & -1 \\
4 & 3 & 0 & 0 \\
10 & 12 & 16 & -2 \\
1 & 2 & 0 & 0
\end{array}\right).$$

(a) Define the term non-singular matrix.

Let P, Q and R be square matrices of the same order, where P and R are non-singular. Let O be the zero matrix of the same order. Prove that

the inverse of the block matrix $\begin{pmatrix} P & O \\ \dots & \dots \\ Q & R \end{pmatrix}$ is

$$\begin{pmatrix} P^{-1} & O \\ \cdots & \cdots & \cdots \\ -R^{-1}QP^{-1} & R^{-1} \end{pmatrix}.$$

Hence find the inverse of the matrix

$$\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right).$$

(b) If $A = \begin{pmatrix} 3 & -4 \\ 1 & -1 \end{pmatrix}$, then use the mathematical induction to prove $A^n = \begin{pmatrix} 1+2n & -4n \\ n & 1-2n \end{pmatrix}$, for all $n \in \mathbb{N}$.

(c) Show that $\det A = (a-b)(b-c)(c-a)(a+b+c)$ for $A = \begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{pmatrix}$, where $a,b,c \in \mathbb{R}$.

(c) Show that
$$det A = (a-b)(b-c)(c-a)(a+b+c)$$
 for $A = \begin{pmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{pmatrix}$, where $a, b, c \in \mathbb{R}$.

(a) State the necessary and sufficient condition for a system of linear equations to be consistent.

$$\lambda x + y + z = 1$$

$$x + \lambda y + z = 1$$

$$x + y + \lambda z = 1$$

to its row reduced echelon form and hence determine the values of λ such that the system has

- (i) a unique solution;
- (ii) no solution;
- (iii) more than one solution.
- i. What is Crammer's rule? (b)
 - ii. Use Crammer's rule to solve the following system of linear equations.

$$2x_1 - 5x_2 + 2x_3 = 7$$

$$x_1 + 2x_2 - 4x_3 = 3$$

$$3x_1 - 4x_2 - 6x_3 = 5.$$