

EASTERN UNIVERSITY, SRI LANKA

EXTERNAL DEGREE EXAMINATION IN SCIENCE SECOND YEAR FIRST SEMESTER - 2003/2004, 2004/2005(July/August, 2008)

DEPARTMENT OF MATHEMATICS

 EXTMT 207 - NUMERICAL ANALYSIS (PROPER \& REPEAT)Calculators are provided
Time: Two hours

Q1. (a) By writing any real number p in a normalized decimal form, explain the terms "chopping" and "rounding".
(b) In a floating point number system, prove that

$$
\text { |relative round-off error } \left\lvert\, \leq \begin{cases}\beta^{1-t}, & \text { for chopping } \\ \frac{1}{2} \beta^{1-t}, & \text { for rounding }\end{cases}\right.
$$

where β and t denote the base number and a maximum number of decimal digits, respectively.
(c) If three approximated values of the number $\frac{1}{3}$ are $0.30,0.33$ and 0.34 , which of these is the best approximation?

Q2. (a) Let $x=g(x)$ be an arrangement of the equation $f(x)=0$, which has root α in the interval I. If $g^{\prime}(x)$ exists and continuous in I satisfying

$$
\left|g^{\prime}(x)\right| \leq h<1, \forall x \in I,
$$

prove that, for any given x_{0}, the sequence $\left\{x_{r}\right\}, r=0,1,2, \ldots$, defined by

$$
x_{r+1}=g\left(x_{r}\right)
$$

converges to α and such α is unique.
Hence, find the condition for the convergence of Newton-Raphson method.
(b) Find a root of the equation $x^{3}-x-1=0$ correct to four decimal places usit Newton-Raphson and Secant methods. Compare the result you have obtaine

Q3. (a) Write down the Lagrange's interpolation formula and show that such interp lation formula p of $f:[a, b] \longrightarrow \mathbb{R}$ satisfying $p\left(x_{i}\right)=f\left(x_{i}\right), i=0,1, \ldots$, where x_{i} 's are distinct in $[a, b]$, always exists and is unique.
(b) Prove that the error in Lagrange's interpolation has the form

$$
\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)}{(n+1)!} f^{n+1}(\xi), \quad \xi \in(a, b)
$$

(c) Find the Lagrange's interpolating polynomial of degree 2 approximating t function $y=\ln x$ using the following tabular values. Hence, find the value $\ln (2.7)$ and determine the error using part (b).

x	2.00000	2.50000	3.00000
$\ln x$	0.69315	0.91629	1.09861

Q4. (a) Write down the formula for the integral

$$
\int_{x_{0}}^{x_{1}} f(x) d x
$$

and its error term, which represent the trapezoidal rule in the interval $\left[x_{0}, x_{1}\right.$ Hence, derive the composite form of the trapezoidal rule and its error ter over the interval $[a, b]$.
(b) Use composite trapezoidal to evaluate an approximate value of

$$
\int_{0}^{1} \frac{1}{1+x} d x
$$

correct to three decimal places using the following table:

x	0.0000	0.2500	0.5000	0.7500	1.0000
y	1.0000	0.8000	0.6667	0.5714	0.5000

Estimate truncation and round-off errors.
(c) Consider the following system of linear equations:

$$
\begin{aligned}
10 x_{1}-2 x_{2}-x_{3}-x_{4} & =3 \\
-2 x_{1}+10 x_{2}-x_{3}-x_{4} & =15 \\
-x_{1}-x_{2}+10 x_{3}-2 x_{4} & =27 \\
-x_{1}-x_{2}-2 x_{3}+10 x_{4} & =-9
\end{aligned}
$$

Use Gauss-Seidel method to carry out 3 iterations for x_{1}, x_{2}, x_{3} and x_{4} correct to 4 decimal places.

